Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Overview

Summary Explorer

Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multiple datasets. It provides a guided assessment of summary quality dimensions such as coverage, faithfulness and position bias. You can inspect summaries from a single model or compare multiple models.

The tool currently hosts the outputs of 55 summarization models across three datasets: CNN DailyMail, XSum, and Webis TL;DR.

To integrate your model in Summary Explorer, please prepare your summaries as described here and contact us.

Use cases

1. View Content Coverage of the Summaries Content Coverage

2. Inspect Hallucinations Hallucinations

3. View Named Entity Coverage of the Summaries Named Entity Coverage

4. Inspect Faithfulness via Relation Alignment Relation Coverage

5. Compare Agreement among Summaries Summary Agreement

6. View Position Bias of a Model Position Bias

Local Deployment

Download the database dump from here and set up the tool as instructed here. The text processing pipeline and sample data can be found here.

Note: The tool is in active development and we plan to add new features. Please feel free to report any issues and provide suggestions.

Citation

@misc{syed2021summary,
      title={Summary Explorer: Visualizing the State of the Art in Text Summarization}, 
      author={Shahbaz Syed and Tariq Yousef and Khalid Al-Khatib and Stefan Jänicke and Martin Potthast},
      year={2021},
      eprint={2108.01879},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Acknowledgements

We sincerely thank all the authors who made their code and model outputs publicly available, meta evaluations of Fabbri et al., 2020 and Bhandari et al., 2020, and the summarization leaderboard at NLP-Progress.

We hope this encourages more authors to share their models and summaries to help track the qualitative progress in text summarization research.

Owner
Webis
Web Technology & Information Systems Group (Webis Group)
Webis
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

Souvik Pratiher 16 Nov 17, 2021
Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮

Datature 243 Jan 05, 2023
An Empirical Review of Optimization Techniques for Quantum Variational Circuits

QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca

Owen Lockwood 5 Jun 28, 2022
JittorVis - Visual understanding of deep learning model.

JittorVis - Visual understanding of deep learning model.

182 Jan 06, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
A library for debugging/inspecting machine learning classifiers and explaining their predictions

ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m

2.6k Dec 30, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
FairML - is a python toolbox auditing the machine learning models for bias.

======== FairML: Auditing Black-Box Predictive Models FairML is a python toolbox auditing the machine learning models for bias. Description Predictive

Julius Adebayo 338 Nov 09, 2022
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve 73 Dec 12, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Comprehensive collection of Pixel Attribution methods for Computer Vision.

Jacob Gildenblat 6.5k Jan 01, 2023
Implementation of linear CorEx and temporal CorEx.

Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx

Hrayr Harutyunyan 34 Nov 15, 2022
Visual Computing Group (Ulm University) 99 Nov 30, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,

Lutz Roeder 20.9k Dec 28, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 20.9k Dec 28, 2022
A library that implements fairness-aware machine learning algorithms

Themis ML themis-ml is a Python library built on top of pandas and sklearnthat implements fairness-aware machine learning algorithms. Fairness-aware M

Niels Bantilan 105 Dec 30, 2022
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah

Alvin Wan 556 Dec 20, 2022
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.

TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and

Ando Saabas 720 Dec 22, 2022
Neural network visualization toolkit for tf.keras

Neural network visualization toolkit for tf.keras

Yasuhiro Kubota 262 Dec 19, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)

Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)

Jesse Vig 4.7k Jan 01, 2023