Useful tool for inserting DataFrames into the Excel sheet.

Overview

PyCellFrame

Insert Pandas DataFrames into the Excel sheet with a bunch of conditions

Install

pip install pycellframe

Usage

Examples

Let's suppose that we have an Excel file named "numbers.xlsx" with the sheet named "Dictionary" in which we would like to insert the pandas.DataFrame.

Import pandas and create an example DataFrame (which will be inserted into the Excel sheet):

import pandas as pd


ex = {
    'Num': [1, 2, 3, 4],
    'AfterFirstBlankCol': 'AfterFirstBlank',
    'Descr': ['One', 'Two', 'Three', 'Four'],
    'AfterSecondBlankCol': 'AfterSecondBlank.',
    'Squared': [1, 4, 9, 16],
    'Binary:': ['1', '10', '11', '100']
}

df = pd.DataFrame(ex)
  • Import openpyxl.load_workbook and open numbers.xlsx - Our Excel workbook;
  • Get - Dictionary our desired sheet:
from openpyxl import load_workbook


workbook = load_workbook('numbers.xlsx')
worksheet = workbook['Dictionary']

Functions

1. incell_style(cell_src, cell_dst)
  • Let's say, we have a cell in Excel Dictionary sheet that we would like to copy the style from, and it is O3;
  • Let O4 be our destination cell:

NOTE: If we wanted to copy that style to more than one cell, we would simply use the loop depending on the locations of the destination cells.

from pycellframe import incell_style


incell_style(cell_src=worksheet['O3'], cell_dst=worksheet['O4'])
2. sheet_to_sheet(filename_sheetname_src, filename_sheetname_dst, calculated)
  • Let's say that we have two Excel files, and we need specific sheet from one file to be completely copied to another file's specific sheet;
  • filename_sheetname_src is the parameter for one file -> sheet the data to be copied from (tuple(['FILENAME_SRC', 'SHEETNAME_SRC']));
  • worksheet_dst is the parameter for the destination Worksheet the data to be copied to (openpyxl.worksheet.worksheet.Worksheet);
  • Let's assume that we have file_src.xlsx as src file and for worksheet_src we can use its CopyThisSheet sheet.
  • We can use output.xlsx -> CopyToThisSheet sheet as the destination worksheet, for which we already declared the Workbook object above.

NOTE: We are assuming that we need all the formulas (where available) from the source sheet, not calculated data, so we set calculated parameter to False

from pycellframe import sheet_to_sheet


worksheet_to = workbook['CopyToThisSheet']

sheet_to_sheet(filename_sheetname_src=('file_src.xlsx', 'CopyThisSheet'),
               worksheet_dst=worksheet_to,
               calculated=False)
3. incell_frame(worksheet, dataframe, col_range, row_range, num_str_cols, skip_cols, headers)
  • From our package pycellframe import function incell_frame;
  • Insert ex - DataFrame into our sheet twice - with and without conditions:
from pycellframe import incell_frame


# 1 - Simple insertion
incell_frame(worksheet=worksheet, dataframe=df)

# 2 - Insertion with some conditions
incell_frame(worksheet=worksheet,
             dataframe=df,
             col_range=(3, 0),
             row_range=(6, 8),
             num_str_cols=['I'],
             skip_cols=['D', 'F'],
             headers=True)

In the first insertion, we did not give our function any arguments, which means the DataFrame ex will be inserted into the Dictionary sheet in the area A1:F4 (without the headers).

However, with the second insertion we define some conditions:

  • col_range=(3, 0) - This means that insertion will be started at the Excel column with the index 3 (column C) and will not be stopped until the very end, since we gave 0 as the second element of the tuple

  • row_range=(6, 8) - Only in between these rows (in Excel) will the DataFrame data be inserted, which means that only the first row (since the headers is set to True) from ex will be inserted into the sheet

  • num_str_cols=['F'] - Another condition here is to not convert Binary column values to int. If we count, this column will be inserted in the Excel column F, so we tell the function to leave the values in it as string

  • skip_cols=['D', 'F'] - D and F columns in Excel will be skipped and since our worksheet was blank in the beginning, these columns will be blank (that is why I named the columns in the DataFrame related names)

  • headers=True - This time, the DataFrame columns will be inserted, too, so the overall insertion area would be C6:J8

For really detailed description of the parameters, please see:
  1. incell_frame.__docs__
  2. sheet_to_sheet.__docs__
  3. incell_style.__docs__
  • Finally, let's save our changes to a new Excel file:
workbook.save('output.xlsx')

Full Code

import pandas as pd
from openpyxl import load_workbook
from pycellframe import incell_style, \
                        incell_frame, \
                        sheet_to_sheet


ex = {
    'Num': [1, 2, 3, 4],
    'AfterFirstBlankCol': 'AfterFirstBlank',
    'Descr': ['One', 'Two', 'Three', 'Four'],
    'AfterSecondBlankCol': 'AfterSecondBlank.',
    'Squared': [1, 4, 9, 16],
    'Binary:': ['1', '10', '11', '100']
}

df = pd.DataFrame(ex)

workbook = load_workbook('numbers.xlsx')
worksheet = workbook['Dictionary']


# Copy the cell style
incell_style(cell_src=worksheet['O3'], cell_dst=worksheet['O4'])


# Copy the entire sheet
worksheet_to = workbook['CopyToThisSheet']

sheet_to_sheet(filename_sheetname_src=('file_src.xlsx', 'CopyThisSheet'),
               worksheet_dst=worksheet_to,
               calculated=False)


# Insert DataFrame into the sheet

## 1 - Simple insertion
incell_frame(worksheet=worksheet, dataframe=df)

## 2 - Insertion with some conditions
incell_frame(worksheet=worksheet,
             dataframe=df,
             col_range=(3, 0),
             row_range=(6, 8),
             num_str_cols=['I'],
             skip_cols=['D', 'F'],
             headers=True)

workbook.save('output.xlsx')
Owner
Luka Sosiashvili
Luka Sosiashvili
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Data Science Environment Setup in single line

datascienv is package that helps your to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries

Ashish Patel 55 Dec 16, 2022
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022