Unsupervised Discovery of Object Radiance Fields

Related tags

Deep LearninguORF
Overview

Unsupervised Discovery of Object Radiance Fields

by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University.

teaser

arXiv link: https://arxiv.org/abs/2107.07905

Project website: https://kovenyu.com/uorf

Environment

We recommend using Conda:

conda env create -f environment.yml
conda activate uorf-3090

or install the packages listed therein. Please make sure you have NVIDIA drivers supporting CUDA 11.0, or modify the version specifictions in environment.yml.

Data and model

Please download datasets and models here.

Evaluation

We assume you have a GPU. If you have already downloaded and unzipped the datasets and models into the root directory, simply run

bash scripts/eval_nvs_seg_chair.sh

from the root directory. Replace the script filename with eval_nvs_seg_clevr.sh, eval_nvs_seg_diverse.sh, and eval_scene_manip.sh for different evaluations. Results will be saved into ./results/. During evaluation, the results on-the-fly will also be sent to visdom in a nicer form, which can be accessed from localhost:8077.

Training

We assume you have a GPU with no less than 24GB memory (evaluation does not require this as rendering can be done ray-wise but some losses are defined on the image space), e.g., 3090. Then run

bash scripts/train_clevr_567.sh

or other training scripts. If you unzip datasets on some other place, add the location as the first parameter:

bash scripts/train_clevr_567.sh PATH_TO_DATASET

Training takes ~6 days on a 3090 for CLEVR-567 and Room-Chair, and ~9 days for Room-Diverse. It can take even longer for less powerful GPUs (e.g., ~10 days on a titan RTX for CLEVR-567 and Room-Chair). During training, visualization will be sent to localhost:8077.

Bibtex

@article{yu2021unsupervised
  author    = {Yu, Hong-Xing and Guibas, Leonidas J. and Wu, Jiajun},
  title     = {Unsupervised Discovery of Object Radiance Fields},
  journal   = {arXiv preprint arXiv:2107.07905},
  year      = {2021},
}

Acknowledgement

Our code framework is adapted from Jun-Yan Zhu's CycleGAN. Some code related to adversarial loss is adapted from a pytorch implementation of StyleGAN2. Some snippets are adapted from pytorch slot attention and NeRF. If you find any problem please don't hesitate to email me at [email protected] or open an issue.

Owner
Hong-Xing Yu
Hong-Xing Yu
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021