Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Related tags

Deep Learningmlcnet
Overview

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021)

Paper Link: https://arxiv.org/abs/2107.11355

This implementation builds on top of OpenPCDet. Please kindly refer to its Github repo for introduction and recent updates.

Installation

a. Set up the environment:

  • Python 3.6+ (3.7 suggested)
  • Pytorch 1.1+ (1.3 suggested)

b. Clone this repository.

c. Install requirements

pip install -r requirements.txt 

d. Install the pcdet library:

python setup.py develop

e. Data preparation

Please refer to GETTING_STARTED.md for data preparation and basic usage of pcdet .

Training and Testing

a. Train a base model on the source domain (KITTI) as the pretrained model for domain adaptation

cd tools/

sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file cfgs/kitti_models/pointrcnn.yaml

# or using slurm
sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file cfgs/kitti_models/pointrcnn.yaml

b. Train the domain adaptation model

sh scripts/dist_train_mean_teacher.sh ${NUM_GPUS} \
--cfg_file cfgs/kitti_models/pointrcnn_mean_teacher_waymo.yaml \
--pretrained_model ${PATH_TO_PRETRAINED_MODEL_CHECKPOINT}

# or using slurm
sh scripts/slurm_train_mean_teacher.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} \
--cfg_file cfgs/kitti_models/pointrcnn_mean_teacher_waymo.yaml \
--pretrained_model ${PATH_TO_PRETRAINED_MODEL_CHECKPOINT} 

c. Test on the target domain (Waymo)

python test.py --cfg_file cfgs/waymo_models/pointrcnn_kitti2waymo.yaml \
--ckpt ${PATH_TO_MODEL_CHECKPOINT}
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022