Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Overview

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

This repository contains the code used for the experiments in "Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness" published at SIGIR 2021 (preprint available).

Citation

If you use this code to produce results for your scientific publication, or if you share a copy or fork, please refer to our SIGIR 2021 paper:

@inproceedings{oosterhuis2021plrank,
  Author = {Oosterhuis, Harrie},
  Booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR`21)},
  Organization = {ACM},
  Title = {Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness},
  Year = {2021}
}

License

The contents of this repository are licensed under the MIT license. If you modify its contents in any way, please link back to this repository.

Usage

This code makes use of Python 3, the numpy and the tensorflow packages, make sure they are installed.

A file is required that explains the location and details of the LTR datasets available on the system, for the Yahoo! Webscope, MSLR-Web30k, and Istella datasets an example file is available. Copy the file:

cp example_datasets_info.txt local_dataset_info.txt

Open this copy and edit the paths to the folders where the train/test/vali files are placed.

Here are some command-line examples that illustrate how the results in the paper can be replicated. First create a folder to store the resulting models:

mkdir local_output

To optimize NDCG use run.py with the --loss flag to indicate the loss to use (PL_rank_1/PL_rank_2/lambdaloss/pairwise/policygradient/placementpolicygradient); --cutoff indicates the top-k that is being optimized, e.g. 5 for [email protected]; --num_samples the number of samples to use per gradient estimation (with dynamic for the dynamic strategy); --dataset indicates the dataset name, e.g. Webscope_C14_Set1. The following command optimizes [email protected] with PL-Rank-2 and the dynamic sampling strategy on the Yahoo! dataset:

python3 run.py local_output/yahoo_ndcg5_dynamic_plrank2.txt --num_samples dynamic --loss PL_rank_2 --cutoff 5 --dataset Webscope_C14_Set1

To optimize the disparity metric for exposure fairness use fairrun.py this has the additional flag --num_exposure_samples for the number of samples to use to estimate exposure (this must always be a greater number than --num_samples). The following command optimizes disparity with PL-Rank-2 and the dynamic sampling strategy on the Yahoo! dataset with 1000 samples for estimating exposure:

python3 fairrun.py local_output/yahoo_fairness_dynamic_plrank2.txt --num_samples dynamic --loss PL_rank_2 --cutoff 5 --num_exposure_samples 1000 --dataset Webscope_C14_Set1
Owner
H.R. Oosterhuis
H.R. Oosterhuis
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022