Learning to Draw: Emergent Communication through Sketching

Overview

Learning to Draw: Emergent Communication through Sketching

This is the official code for the paper "Learning to Draw: Emergent Communication through Sketching".

ArXivPapers With CodeGetting StartedGame setupsModel setupDatasets

About

We demonstrate that it is possible for a communication channel based on line drawing to emerge between agents playing a visual referential communication game. Furthermore we show that with a simple additional self-supervised loss that the drawings the agent produces are interpretable by humans.

Getting started

You'll need to install the required dependencies listed in requirements.txt. This includes installing the differentiable rasteriser from the DifferentiableSketching repository, and the source version of https://github.com/pytorchbearer/torchbearer:

pip install git+https://github.com/jonhare/DifferentiableSketching.git
pip install git+https://github.com/pytorchbearer/torchbearer.git
pip install -r requirements.txt

Once the dependencies are installed, you can run the commgame.py script to train and test models:

python commgame.py train [args]
python commgame.py test [args]

For example, to train a pair of agents on the original game using the STL10 dataset (which will be downloaded if required), you would run:

python commgame.py train --dataset STL10 --output stl10-original-model --sigma2 5e-4 --nlines 20 --learning-rate 0.0001 --imagenet-weights --freeze-vgg --imagenet-norm --epochs 250 --invert --batch-size 100

The options --sigma2 and --nlines control the thickness and number of lines respectively. --imagenet-weights uses the standard pretrained imagenet vgg16 weights (use --sin-weights for stylized imagenet weights). Finally, --freeze-vgg freezes the backbone CNN, --imagenet-norm specifies to apply the imagenet normalisation to images (this should be used when using either imagenet or stylized imagenet weights), and --invert draws black strokes on a white canvas.

The training scripts compute a running communication rate in addition to loss and this is displayed as training progresses. After each epoch a validation pass is performed and images of the sketches and sender inputs and receiver targets are saved to the output directory along with a model snapshot. The output directory also contains a log file with the training and validation statistics per epoch.

Example commands to run the experiments in the paper are given in commands.md

Further details on commandline arguments are given below.

Game setups

All the setups involve a referential game where the reciever tries to select the "correct" image from a pool on the basis of a "sketch" provided by the sender. The primary measure of success is the communication rate. The different command line arguments to control the different game variants are listed in the following subsections:

Havrylov and Titov's Original Game Setup

Sender sees one image; Reciever sees many, where one is exactly the same as sender.

Number of reciever images (target + distractors) is controlled by the batch-size. Number of sender images per iteration can also be controlled for completeness, but defaults to the same as batch size (e.g. each forward pass with a batch plays all possible game combinations using each of the images as a target).

arguments:
--batch-size
[--sender-images-per-iter]

Object-oriented Game Setup (same)

Sender sees one image; Reciever sees many, where one is exactly the same as sender and the others are all of different classes.

arguments:
--object-oriented same
[--num-targets]
[--sender-images-per-iter]

Object-oriented Game Setup (different)

Sender sees one image; Reciever sees many, each of different classes; one of the images is the same class as the sender, but is a completely different image).

arguments:
--object-oriented different 
[--num-targets]
[--sender-images-per-iter]
[--random-transform-sender]

Model setup

Sender

The "sender" consists of a backbone VGG16 CNN which translates the input image into a latent vector and a "decoder" with an MLP that projects the latent representation from the backbone to a set of drawing commands that are differentiably rendered into an image which is sent to the "reciever".

The backbone can optionally be initialised with pretrained weight and also optionally frozen (except for the final linear projection). The backbone, including linear projection can be shared between sender and reciever (default) or separate (--separate_encoders).

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm] 
[--sin-weights --imagenet-norm] 
[--separate_encoders]

Receiver

The "receiver" consists of a backbone CNN which is used to convert visual inputs (both the images in the pool and the sketch) into a latent vector which is then transformed into a different latent representation by an MLP. These projected latent vectors are used for prediction and in the loss as described below.

The actual backbone CNN model architecture will be the same as the sender's. The backbone can optionally share parameters with the "sender" agent. Alternatively it can be initialised with pre-trained weights, and also optionally frozen.

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm]
[--separate_encoders]

Datasets

  • MNIST
  • CIFAR-10 / CIFAR-100
  • TinyImageNet
  • CelebA (--image-size to control size; default 64px)
  • STL-10
  • Caltech101 (training data is balanced by supersampling with augmentation)

Datasets will be downloaded to the dataset root directory (default ./data) as required.

arguments: 
--dataset {CIFAR10,CelebA,MNIST,STL10,TinyImageNet,Caltech101}  
[--dataset-root]

Citation

If you find this repository useful for your research, please cite our paper using the following.

  @@inproceedings{
  mihai2021learning,
  title={Learning to Draw: Emergent Communication through Sketching},
  author={Daniela Mihai and Jonathon Hare},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021},
  url={https://openreview.net/forum?id=YIyYkoJX2eA}
  }
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022