Learning to Draw: Emergent Communication through Sketching

Overview

Learning to Draw: Emergent Communication through Sketching

This is the official code for the paper "Learning to Draw: Emergent Communication through Sketching".

ArXivPapers With CodeGetting StartedGame setupsModel setupDatasets

About

We demonstrate that it is possible for a communication channel based on line drawing to emerge between agents playing a visual referential communication game. Furthermore we show that with a simple additional self-supervised loss that the drawings the agent produces are interpretable by humans.

Getting started

You'll need to install the required dependencies listed in requirements.txt. This includes installing the differentiable rasteriser from the DifferentiableSketching repository, and the source version of https://github.com/pytorchbearer/torchbearer:

pip install git+https://github.com/jonhare/DifferentiableSketching.git
pip install git+https://github.com/pytorchbearer/torchbearer.git
pip install -r requirements.txt

Once the dependencies are installed, you can run the commgame.py script to train and test models:

python commgame.py train [args]
python commgame.py test [args]

For example, to train a pair of agents on the original game using the STL10 dataset (which will be downloaded if required), you would run:

python commgame.py train --dataset STL10 --output stl10-original-model --sigma2 5e-4 --nlines 20 --learning-rate 0.0001 --imagenet-weights --freeze-vgg --imagenet-norm --epochs 250 --invert --batch-size 100

The options --sigma2 and --nlines control the thickness and number of lines respectively. --imagenet-weights uses the standard pretrained imagenet vgg16 weights (use --sin-weights for stylized imagenet weights). Finally, --freeze-vgg freezes the backbone CNN, --imagenet-norm specifies to apply the imagenet normalisation to images (this should be used when using either imagenet or stylized imagenet weights), and --invert draws black strokes on a white canvas.

The training scripts compute a running communication rate in addition to loss and this is displayed as training progresses. After each epoch a validation pass is performed and images of the sketches and sender inputs and receiver targets are saved to the output directory along with a model snapshot. The output directory also contains a log file with the training and validation statistics per epoch.

Example commands to run the experiments in the paper are given in commands.md

Further details on commandline arguments are given below.

Game setups

All the setups involve a referential game where the reciever tries to select the "correct" image from a pool on the basis of a "sketch" provided by the sender. The primary measure of success is the communication rate. The different command line arguments to control the different game variants are listed in the following subsections:

Havrylov and Titov's Original Game Setup

Sender sees one image; Reciever sees many, where one is exactly the same as sender.

Number of reciever images (target + distractors) is controlled by the batch-size. Number of sender images per iteration can also be controlled for completeness, but defaults to the same as batch size (e.g. each forward pass with a batch plays all possible game combinations using each of the images as a target).

arguments:
--batch-size
[--sender-images-per-iter]

Object-oriented Game Setup (same)

Sender sees one image; Reciever sees many, where one is exactly the same as sender and the others are all of different classes.

arguments:
--object-oriented same
[--num-targets]
[--sender-images-per-iter]

Object-oriented Game Setup (different)

Sender sees one image; Reciever sees many, each of different classes; one of the images is the same class as the sender, but is a completely different image).

arguments:
--object-oriented different 
[--num-targets]
[--sender-images-per-iter]
[--random-transform-sender]

Model setup

Sender

The "sender" consists of a backbone VGG16 CNN which translates the input image into a latent vector and a "decoder" with an MLP that projects the latent representation from the backbone to a set of drawing commands that are differentiably rendered into an image which is sent to the "reciever".

The backbone can optionally be initialised with pretrained weight and also optionally frozen (except for the final linear projection). The backbone, including linear projection can be shared between sender and reciever (default) or separate (--separate_encoders).

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm] 
[--sin-weights --imagenet-norm] 
[--separate_encoders]

Receiver

The "receiver" consists of a backbone CNN which is used to convert visual inputs (both the images in the pool and the sketch) into a latent vector which is then transformed into a different latent representation by an MLP. These projected latent vectors are used for prediction and in the loss as described below.

The actual backbone CNN model architecture will be the same as the sender's. The backbone can optionally share parameters with the "sender" agent. Alternatively it can be initialised with pre-trained weights, and also optionally frozen.

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm]
[--separate_encoders]

Datasets

  • MNIST
  • CIFAR-10 / CIFAR-100
  • TinyImageNet
  • CelebA (--image-size to control size; default 64px)
  • STL-10
  • Caltech101 (training data is balanced by supersampling with augmentation)

Datasets will be downloaded to the dataset root directory (default ./data) as required.

arguments: 
--dataset {CIFAR10,CelebA,MNIST,STL10,TinyImageNet,Caltech101}  
[--dataset-root]

Citation

If you find this repository useful for your research, please cite our paper using the following.

  @@inproceedings{
  mihai2021learning,
  title={Learning to Draw: Emergent Communication through Sketching},
  author={Daniela Mihai and Jonathon Hare},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021},
  url={https://openreview.net/forum?id=YIyYkoJX2eA}
  }
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022