Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Overview

Light-SERNet

This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition", submitted in ICASSP 2022.

In this paper, we propose an efficient and lightweight fully convolutional neural network(FCNN) for speech emotion recognition in systems with limited hardware resources. In the proposed FCNN model, various feature maps are extracted via three parallel paths with different filter sizes. This helps deep convolution blocks to extract high-level features, while ensuring sufficient separability. The extracted features are used to classify the emotion of the input speech segment. While our model has a smaller size than that of the state-of-the-art models, it achieves a higher performance on the IEMOCAP and EMO-DB datasets.

Run

1. Clone Repository

$ git clone https://github.com/AryaAftab/LIGHT-SERNET.git
$ cd LIGHT-SERNET/

2. Requirements

  • Tensorflow >= 2.3.0
  • Numpy >= 1.19.2
  • Tqdm >= 4.50.2
  • Matplotlib> = 3.3.1
  • Scikit-learn >= 0.23.2
$ pip install -r requirements.txt

3. Data:

  • Download EMO-DB and IEMOCAP(requires permission to access) datasets
  • extract them in data folder

4. Prepare datasets :

Use the following code to convert each dataset to the desired size(second):

$ python utils/segment/segment_dataset.py -dp data/{dataset_folder} -ip utils/DATASET_INFO.json -d {datasetname_in_jsonfile} -l {desired_size(seconds)}

For example, for EMO-DB Dataset :

$ python utils/segment/segment_dataset.py -dp data/EMO-DB -ip utils/DATASET_INFO.json -d EMO-DB -l 3

5. Set hyperparameters and training config :

You only need to change the constants in the hyperparameters.py to set the hyperparameters and the training config.

6. Strat training:

Use the following code to train the model on the desired dataset with the desired cost function.

  • Note 1: The database name is the name of the database folder after segmentation.
  • Note 2: The results for the confusion matrix are saved in the result folder.
$ python train.py -dn {dataset_name_after_segmentation} -ln {cost_function_name}

For example, for EMO-DB Dataset :

$ python train.py -dn EMO-DB_3s_Segmented -ln focal

Citation

If you find our code useful for your research, please consider citing:

@article{aftab2021light,
  title={Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition},
  author={Aftab, Arya and Morsali, Alireza and Ghaemmaghami, Shahrokh and Champagne, Benoit},
  journal={arXiv preprint arXiv:2110.03435},
  year={2021}
}
Owner
Arya Aftab
Data Scientist, AI Developer
Arya Aftab
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022