This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Overview

Doctoral dissertation of Zheng Zhao

thesis

Dissertation latex compile

This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems. As an example, one can think of a family of DGPs as solutions to stochastic differential equations (SDEs), and view their regression problems as filtering and smoothing problems. Additionally, this thesis also presents a few applications from (D)GPs, such as system identification of SDEs and spectro-temporal signal analysis.

Supervisor: Prof. Simo Särkkä.

Pre-examiners: Prof. Kody J. H. Law from The University of Manchester and Prof. David Duvenaud from University of Toronto.

Opponent: Prof. Manfred Opper from University of Birmingham.

The public defence of the thesis will be streamed online on December 10, 2021 at noon (Helsinki time) via Zoom link https://aalto.zoom.us/j/67529212279. It is free and open to everyone.

More details regarding the thesis itself can be found in its title pages.

Contents

The dissertation is in ./dissertation.pdf. Feel free to download and read~~

Note that you may also find an "official" version in aaltodoc published by Aalto University. However, it destroyed the PDF links and outline, making it very painful to read in computer/ipad/inktablet. I believe that you will feel more enjoyable reading ./dissertation.pdf instead. In terms of content, the one here has no difference with the one in aaltodoc.

  1. ./dissertation.pdf. The PDF of the thesis.
  2. ./errata.md. Errata of the thesis.
  3. ./cover. This folder contains a Python script that generates the cover image.
  4. ./lectio_praecursoria. This folder contains the presentation at the public defence of the thesis.
  5. ./scripts. This folder contains Python scripts that are used to generate some of the figures in the thesis.
  6. ./thesis_latex. This folder contains the LaTeX source of the thesis. Compiling the tex files here will generate a PDF the same as with ./dissertation.pdf.

Satellite repositories

  1. https://github.com/zgbkdlm/ssdgp contains implementation of state-space deep Gaussian processes.
  2. https://github.com/zgbkdlm/tme and https://github.com/zgbkdlm/tmefs contain implementation of Taylor moment expansion method and its filter and smoother applications.

Citation

Bibtex:

@phdthesis{Zhao2021Thesis,
	title = {State-space deep Gaussian processes with applications},
	author = {Zheng Zhao},
	school = {Aalto University},
	year = {2021},
}

Plain text: Zheng Zhao. State-space deep Gaussian processes with applications. PhD thesis, Aalto University, 2021.

License

Unless otherwise stated, all rights belong to the author Zheng Zhao. This repository consists of files covered by different licenses, please check their licenses before you use them.

You are free to download, display, and print ./dissertation.pdf for your own personal use. Commercial use of it is prohibited.

Acknowledgement

I would like to thank Adrien (Monte) Corenflos, Christos Merkatas, Dennis Yeung, and Sakira Hassan for their time and efforts for reviewing and checking the languange of the thesis.

Contact

Zheng Zhao, [email protected]

Owner
Zheng Zhao
喵~~
Zheng Zhao
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022