This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Overview

Doctoral dissertation of Zheng Zhao

thesis

Dissertation latex compile

This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems. As an example, one can think of a family of DGPs as solutions to stochastic differential equations (SDEs), and view their regression problems as filtering and smoothing problems. Additionally, this thesis also presents a few applications from (D)GPs, such as system identification of SDEs and spectro-temporal signal analysis.

Supervisor: Prof. Simo Särkkä.

Pre-examiners: Prof. Kody J. H. Law from The University of Manchester and Prof. David Duvenaud from University of Toronto.

Opponent: Prof. Manfred Opper from University of Birmingham.

The public defence of the thesis will be streamed online on December 10, 2021 at noon (Helsinki time) via Zoom link https://aalto.zoom.us/j/67529212279. It is free and open to everyone.

More details regarding the thesis itself can be found in its title pages.

Contents

The dissertation is in ./dissertation.pdf. Feel free to download and read~~

Note that you may also find an "official" version in aaltodoc published by Aalto University. However, it destroyed the PDF links and outline, making it very painful to read in computer/ipad/inktablet. I believe that you will feel more enjoyable reading ./dissertation.pdf instead. In terms of content, the one here has no difference with the one in aaltodoc.

  1. ./dissertation.pdf. The PDF of the thesis.
  2. ./errata.md. Errata of the thesis.
  3. ./cover. This folder contains a Python script that generates the cover image.
  4. ./lectio_praecursoria. This folder contains the presentation at the public defence of the thesis.
  5. ./scripts. This folder contains Python scripts that are used to generate some of the figures in the thesis.
  6. ./thesis_latex. This folder contains the LaTeX source of the thesis. Compiling the tex files here will generate a PDF the same as with ./dissertation.pdf.

Satellite repositories

  1. https://github.com/zgbkdlm/ssdgp contains implementation of state-space deep Gaussian processes.
  2. https://github.com/zgbkdlm/tme and https://github.com/zgbkdlm/tmefs contain implementation of Taylor moment expansion method and its filter and smoother applications.

Citation

Bibtex:

@phdthesis{Zhao2021Thesis,
	title = {State-space deep Gaussian processes with applications},
	author = {Zheng Zhao},
	school = {Aalto University},
	year = {2021},
}

Plain text: Zheng Zhao. State-space deep Gaussian processes with applications. PhD thesis, Aalto University, 2021.

License

Unless otherwise stated, all rights belong to the author Zheng Zhao. This repository consists of files covered by different licenses, please check their licenses before you use them.

You are free to download, display, and print ./dissertation.pdf for your own personal use. Commercial use of it is prohibited.

Acknowledgement

I would like to thank Adrien (Monte) Corenflos, Christos Merkatas, Dennis Yeung, and Sakira Hassan for their time and efforts for reviewing and checking the languange of the thesis.

Contact

Zheng Zhao, [email protected]

Owner
Zheng Zhao
喵~~
Zheng Zhao
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022