TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Overview

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nigel Collier

Code of our paper: TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Introduction:

Masked language models (MLMs) such as BERT and RoBERTa have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal, especially for tasks that demand discriminative semantic meanings of distinct tokens. In this work, we propose TaCL (Token-aware Contrastive Learning), a novel continual pre-training approach that encourages BERT to learn an isotropic and discriminative distribution of token representations. TaCL is fully unsupervised and requires no additional data. We extensively test our approach on a wide range of English and Chinese benchmarks. The results show that TaCL brings consistent and notable improvements over the original BERT model. Furthermore, we conduct detailed analysis to reveal the merits and inner-workings of our approach

Main Results:

We show the comparison between TaCL (base version) and the original BERT (base version).

(1) English benchmark results on SQuAD (Rajpurkar et al., 2018) (dev set) and GLUE (Wang et al., 2019) average score.

Model SQuAD 1.1 (EM/F1) SQuAD 2.0 (EM/F1) GLUE Average
BERT 80.8/88.5 73.4/76.8 79.6
TaCL 81.6/89.0 74.4/77.5 81.2

(2) Chinese benchmark results (test set F1) on four NER tasks (MSRA, OntoNotes, Resume, and Weibo) and three Chinese word segmentation (CWS) tasks (PKU, CityU, and AS).

Model MSRA OntoNotes Resume Weibo PKU CityU AS
BERT 94.95 80.14 95.53 68.20 96.50 97.60 96.50
TaCL 95.44 82.42 96.45 69.54 96.75 98.16 96.75

Huggingface Models:

Model Name Model Address
English (cambridgeltl/tacl-bert-base-uncased) link
Chinese (cambridgeltl/tacl-bert-base-chinese) link

Example Usage:

import torch
# initialize model
from transformers import AutoModel, AutoTokenizer
model_name = 'cambridgeltl/tacl-bert-base-uncased'
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# create input ids
text = '[CLS] clbert is awesome. [SEP]'
tokenized_token_list = tokenizer.tokenize(text)
input_ids = torch.LongTensor(tokenizer.convert_tokens_to_ids(tokenized_token_list)).view(1, -1)
# compute hidden states
representation = model(input_ids).last_hidden_state # [1, seqlen, embed_dim]

Tutorial (in Chinese language) on how to use Chinese TaCL BERT to performance Name Entity Recognition and Chinese word segmentation:

Tutorial link

Tutorial on how to reproduce the results in our paper:

1. Environment Setup:

python version: 3.8
pip3 install -r requirements.txt

2. Train TaCL:

(1) Prepare pre-training data:

Please refer to details provided in ./pretraining_data directory.

(2) Train the model:

Please refer to details provided in ./pretraining directory.

3. Experiments on English Benchmarks:

Please refer to details provided in ./english_benchmark directory.

4. Experiments on Chinese Benchmarks:

(1) Chinese Benchmark Data Preparation:

chmod +x ./download_benchmark_data.sh
./download_benchmark_data.sh

(2) Fine-tuning and Inference:

Please refer to details provided in ./chinese_benchmark directory.

5. Replicate Our Analysis Results:

We provide all essential code to replicate the results (the images below) provided in our analysis section. The related codes and instructions are located in ./analysis directory. Have fun!

Citation:

If you find our paper and resources useful, please kindly cite our paper:

@misc{su2021tacl,
      title={TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning}, 
      author={Yixuan Su and Fangyu Liu and Zaiqiao Meng and Lei Shu and Ehsan Shareghi and Nigel Collier},
      year={2021},
      eprint={2111.04198},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contact

If you have any questions, feel free to contact me via ([email protected]).

Owner
Yixuan Su
I am a final-year PhD student at the University of Cambridge, supervised by Professor Nigel Collier.
Yixuan Su
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022