A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

Overview

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models

Python PyTorch CC BY 4.0

Official PyTorch Implementation

Using deep learning to optimise radiative transfer calculations.

Preliminary paper to appear at NeurIPS 2021 Datasets Track: https://openreview.net/forum?id=FZBtIpEAb5J

Abstract: Numerical simulations of Earth's weather and climate require substantial amounts of computation. This has led to a growing interest in replacing subroutines that explicitly compute physical processes with approximate machine learning (ML) methods that are fast at inference time. Within weather and climate models, atmospheric radiative transfer (RT) calculations are especially expensive. This has made them a popular target for neural network-based emulators. However, prior work is hard to compare due to the lack of a comprehensive dataset and standardized best practices for ML benchmarking. To fill this gap, we build a large dataset, ClimART, with more than 10 million samples from present, pre-industrial, and future climate conditions, based on the Canadian Earth System Model. ClimART poses several methodological challenges for the ML community, such as multiple out-of-distribution test sets, underlying domain physics, and a trade-off between accuracy and inference speed. We also present several novel baselines that indicate shortcomings of datasets and network architectures used in prior work.

Contact: Venkatesh Ramesh (venka97 at gmail) or Salva Rühling Cachay (salvaruehling at gmail).

Overview:

  • climart/: Package with the main code, baselines and ML training logic.
  • notebooks/: Notebooks for visualization of data.
  • analysis/: Scripts to create visualization of the results (requires logging).
  • scripts/: Scripts to train and evaluate models, and to download the whole ClimART dataset.

Getting Started

Requirements

  • Linux and Windows are supported, but we recommend Linux for performance and compatibility reasons.
  • NVIDIA GPUs with at least 8 GB of memory and system with 12 GB RAM (More RAM is required if training with --load_train_into_mem option which allows for faster training). We have done all testing and development using NVIDIA V100 GPUs.
  • 64-bit Python >=3.7 and PyTorch >=1.8.1. See https://pytorch.org/ for PyTorch install instructions.
  • Python libraries mentioned in ``env.yml`` file, see Getting Started (Need to have miniconda/conda installed).

Downloading the ClimART Dataset

By default, only a subset of CLimART is downloaded. To download the train/val/test years you want, please change the loop in ``data_download.sh.`` appropriately. To download the whole ClimART dataset, you can simply run

bash scripts/download_climart_full.sh 

conda env create -f env.yml   # create new environment will all dependencies
conda activate climart  # activate the environment called 'climart'
bash data_download.sh  # download the dataset (or a subset of it, see above)
# For one of {CNN, GraphNet, GCN, MLP}, run the model with its lowercase name with the following commmand:
bash scripts/train_<model-name>.sh

Dataset Structure

To avoid storage redundancy, we store one single input array for both pristine- and clear-sky conditions. The dimensions of ClimART’s input arrays are:

  • layers: (N, 49, D-lay)
  • levels: (N, 50, 4)
  • globals: (N, 82)

where N is the data dimension (i.e. the number of examples of a specific year, or, during training, of a batch), 49 and 50 are the number of layers and levels in a column respectively. Dlay, 4, 82 is the number of features/channels for layers, levels, globals respectively.

For pristine-sky Dlay = 14, while for clear-sky Dlay = 45, since it contains extra aerosol related variables. The array for pristine-sky conditions can be easily accessed by slicing the first 14 features out of the stored array, e.g.: pristine_array = layers_array[:, :, : 14]

The complete list of variables in the dataset is as follows:

Variables List

Training Options

--exp_type: "pristine" or "clear_sky" for training on the respective atmospheric conditions.
--target_type: "longwave" (thermal) or "shortwave" (solar) for training on the respective radiation type targets.
--target_variable: "Fluxes" or "Heating-rate" for training on profiles of fluxes or heating rates.
--model: ML model architecture to select for training (MLP, GCN, GN, CNN)
--workers: The number of workers to use for dataloading/multi-processing.
--device: "cuda" or "cpu" to use GPUs or not.
--load_train_into_mem: Whether to load the training data into memory (can speed up training)
--load_val_into_mem: Whether to load the validation data into memory (can speed up training)
--lr: The learning rate to use for training.
--epochs: Number of epochs to train the model for.
--optim: The choice of optimizer to use (e.g. Adam)
--scheduler: The learning rate scheduler used for training (expdecay, reducelronplateau, steplr, cosine).
--weight_decay: Weight decay to use for the optimization process.
--batch_size: Batch size for training.
--act: Activation function (e.g. ReLU, GeLU, ...).
--hidden_dims: The hidden dimensionalities to use for the model (e.g. 128 128).
--dropout: Dropout rate to use for parameters.
--loss: Loss function to train the model with (MSE recommended).
--in_normalize: Select how to normalize the data (Z, min_max, None). Z-scaling is recommended.
--net_norm: Normalization scheme to use in the model (batch_norm, layer_norm, instance_norm)
--gradient_clipping: If "norm", the L2-norm of the parameters is clipped the value of --clip. Otherwise no clipping.
--clip: Value to clip the gradient to while training.
--val_metric: Which metric to use for saving the 'best' model based on validation set. Default: "RMSE"
--gap: Use global average pooling in-place of MLP to get output (CNN only).
--learn_edge_structure: If --model=='GCN': Whether to use a L-GCN (if set) with learnable adjacency matrix, or a GCN.
--train_years: The years to select for training the data. (Either individual years 1997+1991 or range 1991-1996)
--validation_years: The years to select for validating the data. Recommended: "2005" or "2005-06" 
--test_ood_1991: Whether to load and test on OOD data from 1991 (Mt. Pinatubo; especially challenging for clear-sky conditions)
--test_ood_historic: Whether to load and test on historic/pre-industrial OOD data from 1850-52.
--test_ood_future: Whether to load and test on future OOD data from 2097-99 (under a changing climate/radiative forcing)
--wandb_model: If "online", Weights&Biases logging. If "disabled" no logging.
--expID: A unique ID for the experiment if using logging.

Reproducing our Baselines

To reproduce our paper results (for seed = 7) you may run the following commands in a shell.

CNN

python main.py --model "CNN" --exp_type "pristine" --target_type "shortwave" --workers 6 --seed 7 \
  --batch_size 128 --lr 2e-4 --optim Adam --weight_decay 1e-6 --scheduler "expdecay" \
  --in_normalize "Z" --net_norm "none" --dropout 0.0 --act "GELU" --epochs 100 \
  --gap --gradient_clipping "norm" --clip 1.0 \
  --train_years "1990+1999+2003" --validation_years "2005" \
  --wandb_mode disabled

MLP

python main.py --model "MLP" --exp_type "pristine" --target_type "shortwave" --workers 6 --seed 7 \
  --batch_size 128 --lr 2e-4 --optim Adam --weight_decay 1e-6 --scheduler "expdecay" \
  --in_normalize "Z" --net_norm "layer_norm" --dropout 0.0 --act "GELU" --epochs 100 \
  --gradient_clipping "norm" --clip 1.0 --hidden_dims 512 256 256 \
  --train_years "1990+1999+2003" --validation_years "2005" \
  --wandb_mode disabled

GCN

python main.py --model "GCN+Readout" --exp_type "pristine" --target_type "shortwave" --workers 6 --seed 7 \
  --batch_size 128 --lr 2e-4 --optim Adam --weight_decay 1e-6 --scheduler "expdecay" \
  --in_normalize "Z" --net_norm "layer_norm" --dropout 0.0 --act "GELU" --epochs 100 \
  --preprocessing "mlp_projection" --projector_net_normalization "layer_norm" --graph_pooling "mean"\
  --residual --improved_self_loops \
  --gradient_clipping "norm" --clip 1.0 --hidden_dims 128 128 128 \  
  --train_years "1990+1999+2003" --validation_years "2005" \
  --wandb_mode disabled

Logging

Currently, logging is disabled by default. However, the user may use wandb to log the experiments by passing the argument --wandb_mode=online

Notebooks

There are some jupyter notebooks in the notebooks folder which we used for plotting, benchmarking etc. You may go through them to visualize the results/benchmark the models.

License:

This work is made available under Attribution 4.0 International (CC BY 4.0) license. CC BY 4.0

Development

This repository is currently under active development and you may encounter bugs with some functionality. Any feedback, extensions & suggestions are welcome!

Citation

If you find ClimART or this repository helpful, feel free to cite our publication:

@inproceedings{cachay2021climart,
    title={{ClimART}: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models},
    author={Salva R{\"u}hling Cachay and Venkatesh Ramesh and Jason N. S. Cole and Howard Barker and David Rolnick},
    booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
    year={2021},
    url={https://openreview.net/forum?id=FZBtIpEAb5J}
}
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022