Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

Overview

CDVD-TSPNL

LICENSE Python PyTorch

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

By Jinshan Pan, Boming Xu, and Haoran Bai

This repository is the official PyTorch implementation of "Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity"

Updates

[2022-02-08] Training code and Testing code are available!
[2022-02-07] Paper coming soon...

Experimental Results

Quantitative evaluations on the video deblurring dataset [11] in terms of PSNR and SSIM. All the comparison results are generated using the publicly available code. All the restored frames instead of randomly selected 30 frames from each test set [11] are used for evaluations. DVD

Quantitative evaluations on the GoPro dataset [43] in terms of PSNR and SSIM. * denotes the reported results from [47]. GOPRO

Quantitative evaluations on the BSD video deblurring dataset [5] in terms of PSNR and SSIM. BSD

Dependencies

  • Linux (Tested on Ubuntu 18.04)
  • Python 3 (Recommend to use Anaconda)
  • PyTorch 1.8.0: conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
  • Install dependent packages :pip install -r requirements.txt
  • Install CDVD-TSPNL :python setup.py develop

Get Started

Pretrained models

  • Models are available in './experiments/pretrained_models/'

Dataset Organization Form

If you prepare your own dataset, please follow the following form like GOPRO/DVD:

|--dataset  
    |--blur  
        |--video 1
            |--frame 1
            |--frame 2
                :  
        |--video 2
            :
        |--video n
    |--gt
        |--video 1
            |--frame 1
            |--frame 2
                :  
        |--video 2
        	:
        |--video n

Training

  • FlowNet pretrained model has been downloaded in './pretrained_models/flownet/'
  • Download training dataset like above form.
  • Run the following commands:
Single GPU
python basicsr/train.py -opt options/train/Deblur/train_Deblur_GOPRO.yml
Multi-GPUs
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/Deblur/train_Deblur_GOPRO.yml --launcher pytorch

Testing

  • Model are available in './experiments/pretrained_models/'
  • Organize your dataset(GOPRO/DVD/BSD) like the above form.
  • Run the following commands:
python basicsr/test.py -opt options/test/Deblur/test_Deblur_GOPRO.yml
  • The deblured result will be in './results/'.
  • We calculate PSNRs/SSIMs following [Here]
  • If we set flip_seq: Ture in config files, testing code will use self-ensemble strategy.(CDVDTSPNL+)

Citation

Owner
hippopmonkey
hippopmonkey
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022