A BERT-based reverse dictionary of Korean proverbs

Overview

Wisdomify

  • Open In Colab
  • Run on Ainize

A BERT-based reverse-dictionary of Korean proverbs.

  • 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end
  • 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end
  • 임용택 : 모델링 / deploy / back-end

Related Projects:

Quick Start

Check the dependencies:

pytorch-lightning==1.3.7.post0
transformers==4.8.1

Clone the project and set up a virtualenv for the project:

git clone https://github.com/eubinecto/wisdomify.git
cd wisdomify
virtualenv wisdomifyenv
source wisdomifyenv/bin/activate  # activate the virtualenv
pip3 install -r ./requirements.txt  # install the required libraries onto the virtualenv

Download a pre-trained wisdomify and its related dataset with DVC.

version description
version_0.zip (1.5GB) the first minimal-viable-product of Wisdomify
version_1.zip (...) to be added...

Before downloading the model data and dataset, you must install DVC depending on your OS. After installing the DVC, you can download data with following command.

If your system is docker-like light OS, you can also install with pip. pip install 'dvc[gs]'

gcloud auth application-default login   
# as this repository uses google storage for dvc, please authenticate with your google account 
dvc pull
# follow the instruction from dvc after this command.

Make sure you have a directory structure like the following:

data
├── lightning_logs
│   ├── readme.md
│   └── version_0
│       ├── checkpoints
│       │   └── wisdomify_def_epoch=19_train_loss=0.00.ckpt
│       ├── events.out.tfevents.1624691069.eubinCloud.57195.0
│       └── hparams.yaml
├── wisdomdata
│   └── version_0
|       ├── wisdom2eg.tsv
|       └── wisdom2def.tsv
└── torchServeModel

Wisdomify a sentence:

python3 -m wisdomify.main.infer --ver="version_0" --desc="까불지말고 침착하여라"
### desc: 까불지말고 침착하여라 ###
0: (원숭이도 나무에서 떨어진다, 0.3917)
1: (산넘어 산, 0.2828)
2: (등잔 밑이 어둡다, 0.2192)
3: (가는 날이 장날, 0.0351)
4: (고래 싸움에 새우 등 터진다, 0.0264)
5: (꿩 대신 닭, 0.0241)
6: (갈수록 태산, 0.0197)
7: (핑계 없는 무덤 없다, 0.0009)
8: (서당개 삼 년이면 풍월을 읊는다, 0.0001)
9: (소문난 잔치에 먹을 것 없다, 0.0000)

Related Work

  • 기반이 되는 모델은 사전훈련된 BERT (Devlin et al., 2018)
  • 정확히는 한국어 구어체를 사전학습한 KcBERT를 사용함 (Junbum, 2020)
  • 사전훈련된 KcBERT를 reverse-dictionary task에 맞게 fine-tune함 (Yan et al., 2020)

How did I end up with Wisdomify?:

  1. Word2Vec: King = Queen - woman, 이런게 된다는게 너무 재미있고 신기하다. 이걸로 게임을 만들어볼 수 있지 않을까? - Toy 프로젝트: word-chemist
  2. 생각보다 잘 되는데? 그럼 Word2Vec로 reverse-dictionary도 구현할 수 있지 않을까? - 학사 졸업 프로젝트 - Idiomify
  3. Sum of Word2Vectors로 reverse-dictionary를 구현하기에는 분명한 한계가 보인다. 문장의 맥락을 이해하는 Language Model은 없는가? - 논문 리뷰: Attention is All you Need
  4. Attention의 목적이 Contextualised embedding을 얻기 위함임은 알겠다. 그런데 왜 각 파라미터를 Q, K, V라고 이름지었는가? 무엇에 비유를 하는 것인가?- What is Q, K, V? - Information Retrieval analogy
  5. Contextualised embedding을 활용한 사례에는 무엇이 있는가? - 논문 리뷰: Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision
  6. Vokenisation 논문을 보니 BERT를 적극 활용하더라. BERT란 어떤 모델인가? - 집현전 중급 2조 BERT 논문리뷰
  7. 아, 혹시 사전훈련된 BERT를 활용한다면 적은 데이터를 가지고도 reverse-dictionary task를 구현할 수 있지 않을까? 누군가 이미 시도를 해보았을 것 같은데? - 논문리뷰: BERT for Monolingual and Cross-Lingual Reverse Dictionary
  8. 로스함수를 이해했다. 한번 BERT로 간단한 reverse-dictionary를 구현해보자 - Toy 프로젝트: fruitify - a reverse-dictionary of fruits!
  9. fruitify: 성공적인 첫 데모!
  10. BERT로 reverse-dictionary를 구현하는 방법을 이해했고, 실재로 구현도 해보았다. 이제 생각해보아야 하는 것은 reverse-dictionary로 풀만한 가치가 있는 문제를 찾는 것 - Wisdomify: 자기주도적으로 우리말 속담을 학습하는 것을 도와주는 reverse-dictionary.

Methods

The loss function

앞서 언급한 논문 (Yan et al., 2020)에서 제시한 reverse-dictionary task를 위한 loss:

BERT for monolingual reverse-dictionary

Hyper parameters

The hyper parameters used for version_0:

{
  "bert_model": "beomi/kcbert-base",
  "versions": {
    "version_0": {
      "desc": "The first minimal-viable-product of wisdomify",
      "data": "wisdom2def",
      "k": 11,
      "lr": 0.00001,
      "max_epochs": 20,
      "batch_size": 40,
      "repeat": 20,
      "num_workers": 4,
      "shuffle": true
    }
  }
}

Training

wisdomify_def_epoch=19_train_loss=0.00.ckpt
  • 훈련셋에서 로스가 0에 수렴할 때 까지 훈련을 진행함. 가능한 빠른 시일 내에 프로토타입을 만들어보는것이 목표였으므로, 일단 validation/test set 구축을 스킵, 오버피팅이 되더라도 훈련 셋에만 핏을 함.
  • 사이즈가 상당히 크므로, 나중에 knowledge distilation (Hinton, 2015)으로 경량화하는 것도 고려해봐야할 것.

Dataset

  • 10개의 속담 별로 5개의 서로다른 정의를 구글링으로 손수 수집. 사이즈가 작으므로 그냥 repo에 업로드 함: wisdom2def
  • 추후 데이터를 더 수집하게 되면 kaggle이나 dropbox에 업로드 해서 접근하는 편이 나을 것.

Examples

Positive examples

  • 갈수록 어렵다
### desc: 갈수록 어렵다 ###
0: ('산넘어 산', 0.9999836683273315)
1: ('갈수록 태산', 1.6340261936420575e-05)
2: ('꿩 대신 닭', 4.177704404639826e-09)
3: ('핑계 없는 무덤 없다', 4.246608897862103e-10)
4: ('원숭이도 나무에서 떨어진다', 4.91051192763603e-11)
5: ('가는 날이 장날', 3.620301280982119e-11)
6: ('등잔 밑이 어둡다', 3.410518395474682e-12)
7: ('고래 싸움에 새우 등 터진다', 2.889838230366905e-14)
8: ('소문난 잔치에 먹을 것 없다', 2.270246673757772e-14)
9: ('서당개 삼 년이면 풍월을 읊는다', 2.424753148985129e-15)
  • 근처에 있을 것이라고는 전혀 예상하지 못했다
### desc: 근처에 있을 것이라고는 전혀 예상하지 못했다 ###
0: ('등잔 밑이 어둡다', 0.934296190738678)
1: ('원숭이도 나무에서 떨어진다', 0.04902056232094765)
2: ('산넘어 산', 0.010009311139583588)
3: ('가는 날이 장날', 0.005946608260273933)
4: ('소문난 잔치에 먹을 것 없다', 0.0002701274352148175)
5: ('고래 싸움에 새우 등 터진다', 0.0002532936632633209)
6: ('갈수록 태산', 0.00010314056999050081)
7: ('핑계 없는 무덤 없다', 9.196436440106481e-05)
8: ('꿩 대신 닭', 8.55061716720229e-06)
9: ('서당개 삼 년이면 풍월을 읊는다', 3.365390739418217e-07)
  • 너 때문에 관계없는 내가 피해봤잖아
### desc: 너 때문에 관계없는 내가 피해봤잖아 ###
0: ('고래 싸움에 새우 등 터진다', 0.9243378043174744)
1: ('가는 날이 장날', 0.028463557362556458)
2: ('핑계 없는 무덤 없다', 0.026872390881180763)
3: ('등잔 밑이 어둡다', 0.012348096817731857)
4: ('소문난 잔치에 먹을 것 없다', 0.003390798345208168)
5: ('산넘어 산', 0.0026215193793177605)
6: ('갈수록 태산', 0.0010220635449513793)
7: ('원숭이도 나무에서 떨어진다', 0.0004960462101735175)
8: ('꿩 대신 닭', 0.00044754118425771594)
9: ('서당개 삼 년이면 풍월을 읊는다', 6.364324889318596e-08)
  • 쓸데없는 변명은 그만 둬
### desc: 쓸데없는 변명은 그만둬 ###
0: ('핑계 없는 무덤 없다', 0.6701037287712097)
1: ('꿩 대신 닭', 0.17732197046279907)
2: ('산넘어 산', 0.1395266205072403)
3: ('갈수록 태산', 0.01272804755717516)
4: ('가는 날이 장날', 0.00020182589651085436)
5: ('원숭이도 나무에서 떨어진다', 0.0001034122469718568)
6: ('고래 싸움에 새우 등 터진다', 1.2503404832386877e-05)
7: ('등잔 밑이 어둡다', 1.5657816447856021e-06)
8: ('소문난 잔치에 먹을 것 없다', 2.735970952016942e-07)
9: ('서당개 삼 년이면 풍월을 읊는다', 3.986170074576911e-11)

속담의 용례를 입력으로 주어도 용례에 맞는 속담을 예측할 수 있을까? 각 속담의 사전적 정의만 훈련에 사용되었다는 것을 고려해보았을 때, 만약 이것이 가능하다면 사전학습된 weight를 십분활용하고 있다는 것의 방증이 될 것.

  • 커피가 없으니 홍차라도 마시자
### desc: 커피가 없으니 홍차라도 마시자 ###
0: ('꿩 대신 닭', 0.5670634508132935)
1: ('가는 날이 장날', 0.15952838957309723)
2: ('산넘어 산', 0.14466965198516846)
3: ('등잔 밑이 어둡다', 0.10353685170412064)
4: ('소문난 잔치에 먹을 것 없다', 0.006912065204232931)
5: ('갈수록 태산', 0.00646367808803916)
6: ('서당개 삼 년이면 풍월을 읊는다', 0.006029943469911814)
7: ('원숭이도 나무에서 떨어진다', 0.004639457445591688)
8: ('핑계 없는 무덤 없다', 0.0011017059441655874)
9: ('고래 싸움에 새우 등 터진다', 5.46958799532149e-05)
  • 그 애가 도망쳐 버렸으면 아무나 대신 잡아넣어 숫자를 채워야 할 게 아니냐?
### desc: 그 애가 도망쳐 버렸으면 아무나 대신 잡아넣어 숫자를 채워야 할 게 아니냐? ###
0: ('꿩 대신 닭', 0.6022371649742126)
1: ('등잔 밑이 어둡다', 0.3207240402698517)
2: ('서당개 삼 년이면 풍월을 읊는다', 0.03545517101883888)
3: ('가는 날이 장날', 0.012123783119022846)
4: ('갈수록 태산', 0.011005728505551815)
5: ('원숭이도 나무에서 떨어진다', 0.010867268778383732)
6: ('핑계 없는 무덤 없다', 0.004052910953760147)
7: ('산넘어 산', 0.002024132991209626)
8: ('고래 싸움에 새우 등 터진다', 0.0013805769849568605)
9: ('소문난 잔치에 먹을 것 없다', 0.00012919674918521196)

  • 나는 어릴 적부터 카센터에서 잡일을 도맡아 하다 보니 이젠 혼자서 자동차 수리도 할수 있다.
### desc: 나는 어릴 적부터 카센터에서 잡일을 도맡아 하다 보니 이젠 혼자서 자동차 수리도 할수 있다. ###
0: ('서당개 삼 년이면 풍월을 읊는다', 0.5147183537483215)
1: ('등잔 밑이 어둡다', 0.34899067878723145)
2: ('가는 날이 장날', 0.12019266188144684)
3: ('원숭이도 나무에서 떨어진다', 0.011380248703062534)
4: ('산넘어 산', 0.002991838613525033)
5: ('갈수록 태산', 0.0007551977760158479)
6: ('꿩 대신 닭', 0.0004372508847154677)
7: ('소문난 잔치에 먹을 것 없다', 0.00040235655615106225)
8: ('고래 싸움에 새우 등 터진다', 7.436128362314776e-05)
9: ('핑계 없는 무덤 없다', 5.710194818675518e-05)
  • 맛집이라길래 일부러 먼길을 달려왔는데 막상 먹어보니 맛이 없더라
### desc: 맛집이라길래 일부러 먼길을 달려왔는데 막상 먹어보니 맛이 없더라 ###
0: ('소문난 잔치에 먹을 것 없다', 0.5269527435302734)
1: ('서당개 삼 년이면 풍월을 읊는다', 0.2070106714963913)
2: ('가는 날이 장날', 0.15454722940921783)
3: ('등잔 밑이 어둡다', 0.11061225831508636)
4: ('꿩 대신 닭', 0.0006726137944497168)
5: ('원숭이도 나무에서 떨어진다', 0.0001451421994715929)
6: ('산넘어 산', 3.2266420021187514e-05)
7: ('핑계 없는 무덤 없다', 1.288024850509828e-05)
8: ('갈수록 태산', 1.0781625860545319e-05)
9: ('고래 싸움에 새우 등 터진다', 3.4537756619101856e-06)

Negative examples

검색할 수 있는 속담이 모두 부정적인 속담이라서 그런지, 긍정적인 문장이 입력으로 들어오면 제대로 예측을 하지 못한다:

  • 결과가 좋아서 기쁘다
0: ('산넘어 산', 0.9329468011856079)
1: ('갈수록 태산', 0.05804209038615227)
2: ('꿩 대신 닭', 0.006065088324248791)
3: ('가는 날이 장날', 0.002668046159669757)
4: ('원숭이도 나무에서 떨어진다', 0.00024604308418929577)
5: ('핑계 없는 무덤 없다', 3.138219108222984e-05)
6: ('등잔 밑이 어둡다', 4.152606720708718e-07)
7: ('소문난 잔치에 먹을 것 없다', 2.1668449790013256e-07)
8: ('고래 싸움에 새우 등 터진다', 2.008734867331441e-08)
9: ('서당개 삼 년이면 풍월을 읊는다', 1.0531459260221254e-08)

"소문난 잔치에 먹을 것 없다"와 동일한 의미를 지님에도 불구하고, "실제로는 별거 없네"를 입력으로 받으면 "산 넘어 산"이 1등으로 출력. 하지만 훈련 셋에 포함된 샘플인 "소문과 실제가 일치하지 않는다"를 입력으로 받으면 정확하게 예측함. 즉 모델이 훈련셋에 오버피팅이 된 상태임을 확인할 수 있다:

  • 실제로는 별거없네 (훈련 셋에 포함되지 않은 정의)
### desc: 실제로는 별거없네 ###
0: ('산넘어 산', 0.9976289868354797)
1: ('갈수록 태산', 0.002168289152905345)
2: ('꿩 대신 닭', 0.00020149812917225063)
3: ('핑계 없는 무덤 없다', 9.218800869348343e-07)
4: ('등잔 밑이 어둡다', 1.6546708536679944e-07)
5: ('가는 날이 장날', 1.0126942839860931e-07)
6: ('원숭이도 나무에서 떨어진다', 9.898108288552976e-08)
7: ('소문난 잔치에 먹을 것 없다', 6.846833322526891e-09)
8: ('고래 싸움에 새우 등 터진다', 4.417973487047533e-10)
9: ('서당개 삼 년이면 풍월을 읊는다', 8.048845877989264e-14)
  • 소문과 실제가 일치하지 않는다 (훈련 셋에 포함된 정의)
### desc: 소문과 실제가 일치하지 않는다. ###
0: ('소문난 잔치에 먹을 것 없다', 0.999997615814209)
1: ('등잔 밑이 어둡다', 1.7779053678168566e-06)
2: ('가는 날이 장날', 5.957719508842274e-07)
3: ('갈수록 태산', 9.973800452200976e-09)
4: ('핑계 없는 무덤 없다', 2.4250623731347787e-09)
5: ('고래 싸움에 새우 등 터진다', 5.40873457133273e-10)
6: ('산넘어 산', 4.573414147390764e-10)
7: ('원숭이도 나무에서 떨어진다', 2.8081562075676914e-10)
8: ('꿩 대신 닭', 2.690336287081152e-10)
9: ('서당개 삼 년이면 풍월을 읊는다', 3.8126671958460534e-11)
  • 소문이랑 다르네 ("소문"이라는 단어에는 민감하게 반응한다.)
### desc: 소문이랑 다르네 ###
0: ('산넘어 산', 0.9770968556404114)
1: ('소문난 잔치에 먹을 것 없다', 0.01917330175638199)
2: ('갈수록 태산', 0.0035712094977498055)
3: ('꿩 대신 닭', 8.989872731035575e-05)
4: ('가는 날이 장날', 6.370477785822004e-05)
5: ('핑계 없는 무덤 없다', 1.7765859183782595e-06)
6: ('원숭이도 나무에서 떨어진다', 1.6799665445432765e-06)
7: ('등잔 밑이 어둡다', 1.6705245116099832e-06)
8: ('고래 싸움에 새우 등 터진다', 3.0059517541758396e-08)
9: ('서당개 삼 년이면 풍월을 읊는다', 4.33282611178587e-11)

Future Work

References

  • Devlin, J. Cheng, M. Lee, K. Toutanova, K. (2018). : Pre-training of Deep Bidirectional Transformers for Language Understanding.
  • Gururangan, S. Marasović, A. Swayamdipta, S. Lo, K. Beltagy, I. Downey, D. Smith, N. (2020). Don't Stop Pretraining: Adapt Language Models to Domains and Tasks
  • Hinton, G. Vinyals, O. Dean, J. (2015). Distilling the Knowledge in a Neural Network
  • Junbum, L. (2020). KcBERT: Korean Comments BERT
  • Yan, H. Li, X. Qiu, X. Deng, B. (2020). BERT for Monolingual and Cross-Lingual Reverse Dictionary
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).

55 Nov 22, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021