Background-Click Supervision for Temporal Action Localization

Related tags

Deep LearningBackTAL
Overview

Background-Click Supervision for Temporal Action Localization

This repository is the official implementation of BackTAL. In this work, we study the temporal action localization under background-click supervision, and find the performance bottleneck of the existing approaches mainly comes from the background errors. Thus, we convert existing action-click supervision to the background-click supervision and develop a novel method, called BackTAL. Extensive experiments on three benchmarks are conducted, which demonstrate the high performance of the established BackTAL and the rationality of the proposed background-click supervision.

Illustrating the architecture of the proposed BackTAL

Requirements

To install requirements:

conda env create -f environment.yaml

Data Preparation

Download

Download pre-extracted I3D features of Thumos14, ActivityNet1.2 and HACS dataset from BaiduYun with code back.

Please ensure the data structure is as below
├── data
   └── Thumos14
       ├── val
           ├── video_validation_0000051.npz
           ├── video_validation_0000052.npz
           └── ...
       └── test
           ├── video_test_0000004.npz
           ├── video_test_0000006.npz
           └── ...
   └── ActivityNet1.2
       ├── training
           ├── v___dXUJsj3yo.npz
           ├── v___wPHayoMgw.npz
           └── ...
       └── validation
           ├── v__3I4nm2zF5Y.npz
           ├── v__8KsVaJLOYI.npz
           └── ...
   └── HACS
       ├── training
           ├── v_0095rqic1n8.npz
           ├── v_62VWugDz1MY.npz
           └── ...
       └── validation
           ├── v_008gY2B8Pf4.npz
           ├── v_00BcXeG1gC0.npz
           └── ...
     

Background-Click Annotations

The raw annotations of THUMOS14 dataset are under directory './data/THUMOS14/human_anns'.

Evaluation

Pre-trained Models

You can download checkpoints for Thumos14, ActivityNet1.2 and HACS dataset from BaiduYun with code back. These models are trained on Thumos14, ActivityNet1.2 or HACS using the configuration file under the directory "./experiments/". Please put these checkpoints under directory "./checkpoints".

Evaluation

Before running the code, please activate the conda environment.

To evaluate BackTAL model on Thumos14, run:

cd ./tools
python eval.py -dataset THUMOS14 -weight_file ../checkpoints/THUMOS14.pth

To evaluate BackTAL model on ActivityNet1.2, run:

cd ./tools
python eval.py -dataset ActivityNet1.2 -weight_file ../checkpoints/ActivityNet1.2.pth

To evaluate BackTAL model on HACS, run:

cd ./tools
python eval.py -dataset HACS -weight_file ../checkpoints/HACS.pth

Results

Our model achieves the following performance:

THUMOS14

threshold 0.3 0.4 0.5 0.6 0.7
mAP 54.4 45.5 36.3 26.2 14.8

ActivityNet v1.2

threshold average-mAP 0.50 0.75 0.95
mAP 27.0 41.5 27.3 4.7

HACS

threshold average-mAP 0.50 0.75 0.95
mAP 20.0 31.5 19.5 4.7

Training

To train the BackTAL model on THUMOS14 dataset, please run this command:

cd ./tools
python train.py -dataset THUMOS14

To train the BackTAL model on ActivityNet v1.2 dataset, please run this command:

cd ./tools
python train.py -dataset ActivityNet1.2

To train the BackTAL model on HACS dataset, please run this command:

cd ./tools
python train.py -dataset HACS

Citing BackTAL

@article{yang2021background,
  title={Background-Click Supervision for Temporal Action Localization},
  author={Yang, Le and Han, Junwei and Zhao, Tao and Lin, Tianwei and Zhang, Dingwen and Chen, Jianxin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

Contact

For any discussions, please contact [email protected].

Owner
LeYang
LeYang
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022