Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Related tags

Deep LearningGLPDepth
Overview

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

PWC PWC

Downloads

  • [Downloads] Trained ckpt files for NYU Depth V2 and KITTI
  • [Downloads] Predicted depth maps png files for NYU Depth V2 and KITTI Eigen split test set

Requirements

Tested on

python==3.7.7
torch==1.6.0
h5py==3.6.0
scipy==1.7.3
opencv-python==4.5.5
mmcv==1.4.3
timm=0.5.4
albumentations=1.1.0
tensorboardX==2.4.1

You can install above package with

$ pip install -r requirements.txt

Inference and Evaluate

Dataset

NYU Depth V2
$ cd ./datasets
$ wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
$ python ../code/utils/extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ./nyu_depth_v2/official_splits/
KITTI

Download annotated depth maps data set (14GB) from [link] into ./datasets/kitti/data_depth_annotated

$ cd ./datasets/kitti/data_depth_annotated/
$ unzip data_depth_annotated.zip

With above two instrtuctions, you can perform eval_with_pngs.py/test.py for NYU Depth V2 and eval_with_pngs for KITTI.

To fully perform experiments, please follow [BTS] repository to obtain full dataset for NYU Depth V2 and KITTI datasets.

Your dataset directory should be

root
- nyu_depth_v2
  - bathroom_0001
  - bathroom_0002
  - ...
  - official_splits
- kitti
  - data_depth_annotated
  - raw_data
  - val_selection_cropped

Evaluation

  • Evaluate with png images

    for NYU Depth V2

    $ python ./code/eval_with_pngs.py --dataset nyudepthv2 --pred_path ./best_nyu_preds/ --gt_path ./datasets/nyu_depth_v2/ --max_depth_eval 10.0 
    

    for KITTI

    $ python ./code/eval_with_pngs.py --dataset kitti --split eigen_benchmark --pred_path ./best_kitti_preds/ --gt_path ./datasets/kitti/ --max_depth_eval 80.0 --garg_crop
    
  • Evaluate with model (NYU Depth V2)

    Result images will be saved in ./args.result_dir/args.exp_name (default: ./results/test)

    • To evaluate only

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --do_evaluate  --max_depth 10.0 --max_depth_eval 10.0
      
             
    • To save pngs for eval_with_pngs

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --save_eval_pngs  --max_depth 10.0 --max_depth_eval 10.0
      
             
    • To save visualized depth maps

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --save_visualize  --max_depth 10.0 --max_depth_eval 10.0
      
             

    In case of kitti, modify arguments to --dataset kitti --max_depth 80.0 --max_depth_eval 80.0 and add --kitti_crop [garg_crop or eigen_crop]

Inference

  • Inference with image directory
    $ python ./code/test.py --dataset imagepath --data_path 
         
           --save_visualize
    
         

To-Do

  • Add inference
  • Add training codes
  • Add dockerHub link
  • Add colab

References

[1] From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation. [code]

[2] SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. [code]

Owner
KAIST, EE, PhD student
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022