Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Related tags

Deep LearningGLPDepth
Overview

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

PWC PWC

Downloads

  • [Downloads] Trained ckpt files for NYU Depth V2 and KITTI
  • [Downloads] Predicted depth maps png files for NYU Depth V2 and KITTI Eigen split test set

Requirements

Tested on

python==3.7.7
torch==1.6.0
h5py==3.6.0
scipy==1.7.3
opencv-python==4.5.5
mmcv==1.4.3
timm=0.5.4
albumentations=1.1.0
tensorboardX==2.4.1

You can install above package with

$ pip install -r requirements.txt

Inference and Evaluate

Dataset

NYU Depth V2
$ cd ./datasets
$ wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
$ python ../code/utils/extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ./nyu_depth_v2/official_splits/
KITTI

Download annotated depth maps data set (14GB) from [link] into ./datasets/kitti/data_depth_annotated

$ cd ./datasets/kitti/data_depth_annotated/
$ unzip data_depth_annotated.zip

With above two instrtuctions, you can perform eval_with_pngs.py/test.py for NYU Depth V2 and eval_with_pngs for KITTI.

To fully perform experiments, please follow [BTS] repository to obtain full dataset for NYU Depth V2 and KITTI datasets.

Your dataset directory should be

root
- nyu_depth_v2
  - bathroom_0001
  - bathroom_0002
  - ...
  - official_splits
- kitti
  - data_depth_annotated
  - raw_data
  - val_selection_cropped

Evaluation

  • Evaluate with png images

    for NYU Depth V2

    $ python ./code/eval_with_pngs.py --dataset nyudepthv2 --pred_path ./best_nyu_preds/ --gt_path ./datasets/nyu_depth_v2/ --max_depth_eval 10.0 
    

    for KITTI

    $ python ./code/eval_with_pngs.py --dataset kitti --split eigen_benchmark --pred_path ./best_kitti_preds/ --gt_path ./datasets/kitti/ --max_depth_eval 80.0 --garg_crop
    
  • Evaluate with model (NYU Depth V2)

    Result images will be saved in ./args.result_dir/args.exp_name (default: ./results/test)

    • To evaluate only

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --do_evaluate  --max_depth 10.0 --max_depth_eval 10.0
      
             
    • To save pngs for eval_with_pngs

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --save_eval_pngs  --max_depth 10.0 --max_depth_eval 10.0
      
             
    • To save visualized depth maps

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --save_visualize  --max_depth 10.0 --max_depth_eval 10.0
      
             

    In case of kitti, modify arguments to --dataset kitti --max_depth 80.0 --max_depth_eval 80.0 and add --kitti_crop [garg_crop or eigen_crop]

Inference

  • Inference with image directory
    $ python ./code/test.py --dataset imagepath --data_path 
         
           --save_visualize
    
         

To-Do

  • Add inference
  • Add training codes
  • Add dockerHub link
  • Add colab

References

[1] From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation. [code]

[2] SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. [code]

Owner
KAIST, EE, PhD student
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022