An Efficient and Effective Framework for Session-based Social Recommendation

Overview

SEFrame

This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation".

Requirements

  • Python 3.8
  • CUDA 10.2
  • PyTorch 1.7.1
  • DGL 0.5.3
  • NumPy 1.19.2
  • Pandas 1.1.3

Usage

  1. Install all the requirements.

  2. Download the datasets:

  3. Create a folder called datasets and extract the raw data files to the folder.
    The folder should include the following files for each dataset:

    • Gowalla: loc-gowalla_totalCheckins.txt and loc-gowalla_edges.txt
    • Delicious: user_taggedbookmarks-timestamps.dat and user_contacts-timestamps.dat
    • Foursquare: dataset_WWW_Checkins_anonymized.txt and dataset_WWW_friendship_new.txt
  4. Preprocess the datasets using the Python script preprocess.py.
    For example, to preprocess the Gowalla dataset, run the following command:

    python preprocess.py --dataset gowalla

    The above command will create a folder datasets/gowalla to store the preprocessed data files.
    Replace gowalla with delicious or foursquare to preprocess other datasets.

    To see the detailed usage of preprocess.py, run the following command:

    python preprocess.py -h
  5. Train and evaluate a model using the Python script run.py.
    For example, to train and evaluate the model NARM on the Gowalla dataset, run the following command:

    python run.py --model NARM --dataset-dir datasets/gowalla

    Other available models are NextItNet, STAMP, SRGNN, SSRM, SNARM, SNextItNet, SSTAMP, SSRGNN, SSSRM, DGRec, and SERec.
    You can also see all the available models in the srs/models folder.

    To see the detailed usage of run.py, run the following command:

    python run.py -h

Dataset Format

You can train the models using your datasets. Each dataset should contain the following files:

  • stats.txt: A TSV file containing three fields, num_users, num_items, and max_len (the maximum length of sessions). The first row is the header and the second row contains the values.

  • train.txt: A TSV file containing all training sessions, where each session has three fileds, namely, sessionId, userId, and items. Both sessionId and userId should be integers. A session with a larger sessionId means that it was generated later (this requirement can be ignored if the used models do not care about the order of sessions, i.e., when the models are not DGRec). The userId should be in the range of [0, num_users). The items field of each session contains the clicked items in the session which is a sequence of item IDs separated by commas. The item IDs should be in the range of [0, num_items).

  • valid.txt and test.txt: TSV files containing all validation and test sessions, respectively. Both files have the same format as train.txt. Note that the session IDs in valid.txt and test.txt should be larger than those in train.txt.

  • edges.txt: A TSV file containing the relations in the social network. It has two columns, follower and followee. Both columns contain the user IDs.

You can see datasets/delicious for an example of the dataset.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{chen2021seframe,
   title="An Efficient and Effective Framework for Session-based Social Recommendation",
   author="Tianwen {Chen} and Raymond Chi-Wing {Wong}",
   booktitle="Proceedings of the Fourteenth ACM International Conference on Web Search and Data Mining (WSDM '21)",
   pages="400--408",
   year="2021"
}
Owner
Tianwen CHEN
A CS PhD Student in HKUST
Tianwen CHEN
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022