A Python scikit for building and analyzing recommender systems

Overview

GitHub version Documentation Status Build Status python versions License DOI

logo

Overview

Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data.

Surprise was designed with the following purposes in mind:

The name SurPRISE (roughly :) ) stands for Simple Python RecommendatIon System Engine.

Please note that surprise does not support implicit ratings or content-based information.

Getting started, example

Here is a simple example showing how you can (down)load a dataset, split it for 5-fold cross-validation, and compute the MAE and RMSE of the SVD algorithm.

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate

# Load the movielens-100k dataset (download it if needed).
data = Dataset.load_builtin('ml-100k')

# Use the famous SVD algorithm.
algo = SVD()

# Run 5-fold cross-validation and print results.
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

Output:

Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

            Fold 1  Fold 2  Fold 3  Fold 4  Fold 5  Mean    Std
RMSE        0.9311  0.9370  0.9320  0.9317  0.9391  0.9342  0.0032
MAE         0.7350  0.7375  0.7341  0.7342  0.7375  0.7357  0.0015
Fit time    6.53    7.11    7.23    7.15    3.99    6.40    1.23
Test time   0.26    0.26    0.25    0.15    0.13    0.21    0.06

Surprise can do much more (e.g, GridSearchCV)! You'll find more usage examples in the documentation .

Benchmarks

Here are the average RMSE, MAE and total execution time of various algorithms (with their default parameters) on a 5-fold cross-validation procedure. The datasets are the Movielens 100k and 1M datasets. The folds are the same for all the algorithms. All experiments are run on a notebook with Intel Core i5 7th gen (2.5 GHz) and 8Go RAM. The code for generating these tables can be found in the benchmark example.

Movielens 100k RMSE MAE Time
SVD 0.934 0.737 0:00:11
SVD++ 0.92 0.722 0:09:03
NMF 0.963 0.758 0:00:15
Slope One 0.946 0.743 0:00:08
k-NN 0.98 0.774 0:00:10
Centered k-NN 0.951 0.749 0:00:10
k-NN Baseline 0.931 0.733 0:00:12
Co-Clustering 0.963 0.753 0:00:03
Baseline 0.944 0.748 0:00:01
Random 1.514 1.215 0:00:01
Movielens 1M RMSE MAE Time
SVD 0.873 0.686 0:02:13
SVD++ 0.862 0.673 2:54:19
NMF 0.916 0.724 0:02:31
Slope One 0.907 0.715 0:02:31
k-NN 0.923 0.727 0:05:27
Centered k-NN 0.929 0.738 0:05:43
k-NN Baseline 0.895 0.706 0:05:55
Co-Clustering 0.915 0.717 0:00:31
Baseline 0.909 0.719 0:00:19
Random 1.504 1.206 0:00:19

Installation

With pip (you'll need numpy, and a C compiler. Windows users might prefer using conda):

$ pip install numpy
$ pip install scikit-surprise

With conda:

$ conda install -c conda-forge scikit-surprise

For the latest version, you can also clone the repo and build the source (you'll first need Cython and numpy):

$ pip install numpy cython
$ git clone https://github.com/NicolasHug/surprise.git
$ cd surprise
$ python setup.py install

License and reference

This project is licensed under the BSD 3-Clause license, so it can be used for pretty much everything, including commercial applications. Please let us know how Surprise is useful to you!

Please make sure to cite the paper if you use Surprise for your research:

@article{Hug2020,
  doi = {10.21105/joss.02174},
  url = {https://doi.org/10.21105/joss.02174},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {52},
  pages = {2174},
  author = {Nicolas Hug},
  title = {Surprise: A Python library for recommender systems},
  journal = {Journal of Open Source Software}
}

Contributors

The following persons have contributed to Surprise:

ashtou, bobbyinfj, caoyi, Олег Демиденко, Charles-Emmanuel Dias, dmamylin, Lauriane Ducasse, Marc Feger, franckjay, Lukas Galke, Tim Gates, Pierre-François Gimenez, Zachary Glassman, Jeff Hale, Nicolas Hug, Janniks, jyesawtellrickson, Doruk Kilitcioglu, Ravi Raju Krishna, Hengji Liu, Maher Malaeb, Manoj K, James McNeilis, Naturale0, nju-luke, Jay Qi, Lucas Rebscher, Skywhat, David Stevens, TrWestdoor, Victor Wang, Mike Lee Williams, Jay Wong, Chenchen Xu, YaoZh1918.

Thanks a lot :) !

Development Status

Starting from version 1.1.0 (September 19), we will only maintain the package and provide bugfixes. No new features will be considered.

For bugs, issues or questions about Surprise, please use the GitHub project page. Please don't send emails (we will not answer).

Owner
Nicolas Hug
ML engineer, Scikit-learn core-developer
Nicolas Hug
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Pytorch domain library for recommendation systems

TorchRec (Experimental Release) TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale

Meta Research 1.3k Jan 05, 2023
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
Attentive Social Recommendation: Towards User And Item Diversities

ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a

Dongsheng Luo 1 Nov 14, 2021
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022