This is the open source implementation of the ICLR2022 paper "StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis"

Overview

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis

Random Sample

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis
Jiatao Gu, Lingjie Liu, Peng Wang, Christian Theobalt

Project Page | Video | Demo | Paper | Data

Abstract: We propose StyleNeRF, a 3D-aware generative model for photo-realistic high-resolution image synthesis with high multi-view consistency, which can be trained on unstructured 2D images. Existing approaches either cannot synthesize high-resolution images with fine details or yield noticeable 3D-inconsistent artifacts. In addition, many of them lack control over style attributes and explicit 3D camera poses. StyleNeRF integrates the neural radiance field (NeRF) into a style-based generator to tackle the aforementioned challenges, i.e., improving rendering efficiency and 3D consistency for high-resolution image generation. We perform volume rendering only to produce a low-resolution feature map and progressively apply upsampling in 2D to address the first issue. To mitigate the inconsistencies caused by 2D upsampling, we propose multiple designs, including a better upsampler and a new regularization loss. With these designs, StyleNeRF can synthesize high-resolution images at interactive rates while preserving 3D consistency at high quality. StyleNeRF also enables control of camera poses and different levels of styles, which can generalize to unseen views. It also supports challenging tasks, including zoom-in and-out, style mixing, inversion, and semantic editing.

Requirements

The codebase is tested on

  • Python 3.7
  • PyTorch 1.7.1
  • 8 Nvidia GPU (Tesla V100 32GB) with CUDA version 11.0

For additional python libraries, please install by:

pip install -r requirements.txt

Please refer to https://github.com/NVlabs/stylegan2-ada-pytorch for additional software/hardware requirements.

Dataset

We follow the same dataset format as StyleGAN2-ADA supported, which can be either an image folder, or a zipped file.

Pretrained Checkpoints

You can download the pre-trained checkpoints (used in our paper) and some recent variants trained with current codebase as follows:

Dataset Resolution #Params(M) Config Download
FFHQ 256 128 Default Hugging Face 🤗
FFHQ 512 148 Default Hugging Face 🤗
FFHQ 1024 184 Default Hugging Face 🤗

(I am slowly adding more checkpoints. Thanks for your very kind patience!)

Train a new StyleNeRF model

python run_train.py outdir=${OUTDIR} data=${DATASET} spec=paper512 model=stylenerf_ffhq

It will automatically detect all usable GPUs.

Please check configuration files at conf/model and conf/spec. You can always add your own model config. More details on how to use hydra configuration please follow https://hydra.cc/docs/intro/.

Render the pretrained model

python generate.py --outdir=${OUTDIR} --trunc=0.7 --seeds=${SEEDS} --network=${CHECKPOINT_PATH} --render-program="rotation_camera"

It supports different rotation trajectories for rendering new videos.

Run a demo page

python web_demo.py 21111

It will in default run a Gradio-powered demo on https://localhost:21111

[NEW] The demo is also integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo: Hugging Face Spaces

Web demo

Run a GUI visualizer

python visualizer.py

An interative application will show up for users to play with. GUI demo

Citation

@inproceedings{
    gu2022stylenerf,
    title={StyleNeRF: A Style-based 3D Aware Generator for High-resolution Image Synthesis},
    author={Jiatao Gu and Lingjie Liu and Peng Wang and Christian Theobalt},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=iUuzzTMUw9K}
}

License

Copyright © Facebook, Inc. All Rights Reserved.

The majority of StyleNeRF is licensed under CC-BY-NC, however, portions of this project are available under a separate license terms: all codes used or modified from stylegan2-ada-pytorch is under the Nvidia Source Code License.

Owner
Meta Research
Meta Research
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral) This repository contains the official PyTorch implementation

Shunsuke Saito 235 Dec 18, 2022
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

tooraj taraz 3 Feb 10, 2022
Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Rizky Dermawan 4 Mar 10, 2022
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022
Brief idea about our project is mentioned in project presentation file.

Brief idea about our project is mentioned in project presentation file. You just have to run attendance.py file in your suitable IDE but we prefer jupyter lab.

Dhruv ;-) 3 Mar 20, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
kaldi-asr/kaldi is the official location of the Kaldi project.

Kaldi Speech Recognition Toolkit To build the toolkit: see ./INSTALL. These instructions are valid for UNIX systems including various flavors of Linux

Kaldi 12.3k Jan 05, 2023
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Sergio Díaz Fernández 1 Jan 13, 2022
A python programusing Tkinter graphics library to randomize questions and answers contained in text files

RaffleOfQuestions Um programa simples em python, utilizando a biblioteca gráfica Tkinter para randomizar perguntas e respostas contidas em arquivos de

Gabriel Ferreira Rodrigues 1 Dec 16, 2021