Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

Overview

STN-OCR: A single Neural Network for Text Detection and Text Recognition

This repository contains the code for the paper: STN-OCR: A single Neural Network for Text Detection and Text Recognition

Please note that we refined our approach and released new source code. You can find the code here

Please use the new code, if you want to experiment with FSNS like data and our approach. It should also be easy to redo the text recognition experiments with the new code, although we did not release any code for that.

Structure of the repository

The folder datasets contains code related to datasets used in the paper. datasets/svhn contains several scripts that can be used to create svhn based ground truth files as used in our experiments reported in section 4.2., please see the readme in this folder on how to use the scripts. datasets/fsns contains scripts that can be used to first download the fsns dataset, second extract the images from the downloaded files and third restructure the contained gt files.

The folder mxnet contains all code used for training our networks.

Installation

In order to use the code you will need the following software environment:

  1. Install python3 (the code might work with python2, too, but this is untested)
  2. it might be a good idea to use a virtualenv
  3. install all requirements with pip install -r requirements.txt
  4. clone and install warp-ctc from here
  5. go into the folder mxnet/metrics/ctc and run python setup.py build_ext --inplace
  6. clone the mxnet repository
  7. checkout the tag v0.9.3
  8. add the warpctc plugin to the project by enabling it in the file config.mk
  9. compile mxnet
  10. install the python bindings of mxnet
  11. You should be ready to go!

Training

You can use this code to train models for three different tasks.

SVHN House Number Recognition

The file train_svhn.py is the entry point for training a network using our purpose build svhn datasets. The file as such is ready to train a network capable of finding a single house number placed randomly on an image.

Example: centered_image

In order to do this, you need to follow these steps:

  1. Download the datasets

  2. Locate the folder generated/centered

  3. open train.csv and adapt the paths of all images to the path on your machine (do the same with valid.csv)

  4. make sure to prepare your environment as described in installation

  5. start the training by issuing the following command:

    python train_svhn.py <path to train.csv> <path to valid.csv> --gpus <gpu id you want to use> --log-dir <where to save the logs> -b <batch size you want ot use> --lr 1e-5 --zoom 0.5 --char-map datasets/svhn/svhn_char_map.json

  6. Wait and enjoy.

If you want to do experiments on more challenging images you might need to update some parts of the code in train_svhn.py. The parts you might want to update are located around line 40 in this file. Here you can change the max. number of house numbers in the image (num_timesteps), the maximum number of characters per house number (labels_per_timestep), the number of rnn layers to use for predicting the localization num_rnn_layers and whether to use a blstm for predicting the localization or not use_blstm.

A quite more challenging dataset is contained in the folder medium_two_digits, or medium in the datasets folder. Example: 2_digits_more_challenge

If you want to follow our experiments with svhn numbers placed in a regular grid you'll need to do the following:

  1. Download the datasets
  2. Locate the folder generated/easy
  3. open train.csv and adapt the paths of all images to the path on your machine (do the same with valid.csv)
  4. set num_timesteps and labels_per_timestep to 4 in train_svhn.py
  5. start the training using the following command: python train_svhn.py <path to train.csv> <path to valid.csv> --gpus <gpu id you want to use> --log-dir <where to save the logs> -b <batch size you want ot use> --lr 1e-5
  6. If you are lucky it will work ;)

Text Recognition

Following our text recognition experiments might be a little difficult, because we can not offer the entire dataset used by us. But it is possible to perform the experiments based on the Synth-90k dataset provided by Jaderberg et al. here. After downloading and extracting this file you'll need to adapt the groundtruth file provided with this dataset to fit to the format used by our code. Our format is quite easy. You need to create a csv file with tabular separated values. The first column is the absolute path to the image and the rest of the line are the labels corresponding to this image.

To train the network you can use the train_text_recognition.py script. You can start this script in a similar manner to the train_svhn.py script.

FSNS

In order to redo our experiments on the FSNS dataset you need to perform the following steps:

  1. Download the fsns dataset using the download_fsns.py script located in datasets/fsns

  2. Extract the individual images using the tfrecord_to_image.py script located in datasets/fsns/tfrecord_utils (you will need to install tensorflow for doing that)

  3. Use the transform_gt.py script to transform the original fsns groundtruth, which is based on a single line to a groundtruth containing labels for each word individually. A possible usage of the transform_gt.py script could look like this:

    python transform_gt.py <path to original gt> datasets/fsns/fsns_char_map.json <path to gt that shall be generated>

  4. Because MXNet expects the blank label to be 0 for the training with CTC Loss, you have to use the swap_classes.py script in datasets/fsns and swap the class for space and blank in the gt, by issuing:

    python swap_classes.py <original gt> <swapped gt> 0 133

  5. After performing these steps you should be able to run the training by issuing:

    python train_fsns.py <path to generated train gt> <path to generated validation gt> --char-map datases/fsns/fsns_char_map.json --blank-label 0

Observing the Training Progress

We've added a nice script that makes it possible to see how well the network performs at every step of the training. This progress is normally plotted to disk for each iteration and can later on be used to create animations of the train progress (you can use the create_gif.py and create_video.py scripts located in mxnet/utils for this purpose). Besides this normal plotting to disk it is also possible to directly see this progress while the training is running. In order to see this you have to do the following:

  1. start the show_progress.py script in mxnet/utils

  2. start the training with the following additional command line params:

    --send-bboxes --ip <localhost, or remote ip if you are working on a remote machine> --port <the port the show_progress.py script is running on (default is 1337)

  3. enjoy!

This tool is especially helpful in determining whether the network is learning anything or not. We recommend that you always use this tool while training.

Evaluation

If you want to evaluate already trained models you can use the evaluation scripts provided in the mxnet folder. For evaluating a model you need to do the following:

  1. train or download a model

  2. choose the correct evaluation script an adapt it, if necessary (take care in case you are fiddling around with the amount of timesteps and number of RNN layers)

  3. Get the dataset you want to evaluate the model on and adapt the groundtruth file to fit the format expected by our software. The format expected by our software is defined as a csv (tab separated) file that looks like that: <absolute path to image> \t <numerical labels each label separated from the other by \t>

  4. run the chosen evaluation script like so

    python eval_<type>_model.py <path to model dir>/<prefix of model file> <number of epoch to test> <path to evaluation gt> <path to char map>

You can use eval_svhn_model.py for evaluating a model trained with CTC on the original svhn dataset, the eval_text_recognition_model.py script for evaluating a model trained for text recognition, and the eval_fsns_model.py for evaluating a model trained on the FSNS dataset.

License

This Code is licensed under the GPLv3 license. Please see further details in LICENSE.md.

Citation

If you are using this Code please cite the following publication:

@article{bartz2017stn,
  title={STN-OCR: A single Neural Network for Text Detection and Text Recognition},
  author={Bartz, Christian and Yang, Haojin and Meinel, Christoph},
  journal={arXiv preprint arXiv:1707.08831},
  year={2017}
}

A short note on code quality

The code contains a huge amount of workarounds around MXNet, as we were not able to find any easier way to do what we wanted to do. If you know a better way, pease let us know, as we would like to have code that is better understandable, as now.

ScanTailor Advanced is the version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and fixes.

ScanTailor Advanced The ScanTailor version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and f

952 Dec 31, 2022
M-LSDを用いて四角形を検出し、射影変換を行うサンプルプログラム

M-LSD-warpPerspective-Example M-LSDを用いて四角形を検出し、射影変換を行うサンプルプログラムです。 Requirements OpenCV 3.4.2 or Later tensorflow 2.4.1 or Later Usage 実行方法は以下です。 pytho

KazuhitoTakahashi 9 Oct 14, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
Resizing Canny Countour In Python

Resizing_Canny_Countour Install Visual Studio Code , https://code.visualstudio.com/download Select Python and install with terminal( pip install openc

Walter Ng 1 Nov 07, 2021
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
A bot that extract text from images using the Tesseract OCR.

Text from image (OCR) @ocr_text_bot A simple bot to extract text from images. Usage What do I need? A AWS key configured locally, see here. NodeJS. I

Weverton Marques 4 Aug 06, 2021
Generate a list of papers with publicly available source code in the daily arxiv

2021-06-08 paper code optimal network slicing for service-oriented networks with flexible routing and guaranteed e2e latency networkslicing multi-moda

79 Jan 03, 2023
Distort a video using Seam Carving (video) and Vibrato effect (sound)

Distort videos Applies a Seam Carving algorithm (aka liquid rescale) on every frame of a video, and a vibrato effect on the audio to distort the video

AlexZeGamer 6 Dec 06, 2022
Controlling the computer volume with your hands // OpenCV

HandsControll-AI Controlling the computer volume with your hands // OpenCV Step 1 git clone https://github.com/Hayk-21/HandsControll-AI.git pip instal

Hayk 1 Nov 04, 2021
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
A curated list of promising OCR resources

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources) awesome-ocr A curated list of promising

wanghaisheng 1.6k Jan 04, 2023
In this project we will be using the live feed coming from the webcam to create a virtual mouse with complete functionalities.

Virtual Mouse Using OpenCV In this project we will be using the live feed coming from the webcam to create a virtual mouse using hand tracking. Projec

Hassan Shahzad 8 Dec 20, 2022
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
Face Detection with DLIB

Face Detection with DLIB In this project, we have detected our face with dlib and opencv libraries. Setup This Project Install DLIB & OpenCV You can i

Can 2 Jan 16, 2022
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022
Image augmentation for machine learning experiments.

imgaug This python library helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much lar

Alexander Jung 13.2k Jan 02, 2023
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022