PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

Overview

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition.


Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. Conformer combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies.

This repository contains only model code, but you can train with conformer with this repository.

Installation

This project recommends Python 3.7 or higher. We recommend creating a new virtual environment for this project (using virtual env or conda).

Prerequisites

  • Numpy: pip install numpy (Refer here for problem installing Numpy).
  • Pytorch: Refer to PyTorch website to install the version w.r.t. your environment.

Install from source

Currently we only support installation from source code using setuptools. Checkout the source code and run the following commands:

pip install -e .

Usage

import torch
import torch.nn as nn
from conformer import Conformer

batch_size, sequence_length, dim = 3, 12345, 80

cuda = torch.cuda.is_available()  
device = torch.device('cuda' if cuda else 'cpu')

inputs = torch.rand(batch_size, sequence_length, dim).to(device)
input_lengths = torch.IntTensor([12345, 12300, 12000])
targets = torch.LongTensor([[1, 3, 3, 3, 3, 3, 4, 5, 6, 2],
                            [1, 3, 3, 3, 3, 3, 4, 5, 2, 0],
                            [1, 3, 3, 3, 3, 3, 4, 2, 0, 0]]).to(device)
target_lengths = torch.LongTensor([9, 8, 7])

model = nn.DataParallel(Conformer(num_classes=10, input_dim=dim, 
                                  encoder_dim=32, num_encoder_layers=3, 
                                  decoder_dim=32, device=device)).to(device)

# Forward propagate
outputs = model(inputs, input_lengths, targets, target_lengths)

# Recognize input speech
outputs = model.module.recognize(inputs, input_lengths)

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on github or
contacts [email protected] please.

I appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

I follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

Reference

Author

Comments
  • Outputs differ from Targets

    Outputs differ from Targets

    @sooftware Can you kindly explain to me why the output lengths and targets are so different? :/ (also in outputs I get negative floats). Example shown below

    The outputs are of shape [32,490,16121] (where 16121 is the len of my vocab) What is the 490 dimensions Also the outputs are probabilities right?

    (outputs)
    tensor([[[-9.7001, -9.6490, -9.6463,  ..., -9.6936, -9.6430, -9.7431],
             [-9.6997, -9.6487, -9.6470,  ..., -9.6903, -9.6450, -9.7416],
             [-9.6999, -9.6477, -9.6479,  ..., -9.6898, -9.6453, -9.7417],
             ...,
             [-9.7006, -9.6449, -9.6513,  ..., -9.6889, -9.6477, -9.7405],
             [-9.7003, -9.6448, -9.6512,  ..., -9.6893, -9.6477, -9.7410],
             [-9.7007, -9.6453, -9.6513,  ..., -9.6892, -9.6466, -9.7403]],
    
            [[-9.6844, -9.6316, -9.6387,  ..., -9.6880, -9.6269, -9.7657],
             [-9.6834, -9.6299, -9.6404,  ..., -9.6872, -9.6283, -9.7642],
             [-9.6834, -9.6334, -9.6387,  ..., -9.6864, -9.6290, -9.7616],
             ...,
             [-9.6840, -9.6299, -9.6431,  ..., -9.6830, -9.6304, -9.7608],
             [-9.6838, -9.6297, -9.6428,  ..., -9.6834, -9.6303, -9.7609],
             [-9.6842, -9.6300, -9.6428,  ..., -9.6837, -9.6292, -9.7599]],
    
            [[-9.6966, -9.6386, -9.6458,  ..., -9.6896, -9.6375, -9.7521],
             [-9.6974, -9.6374, -9.6462,  ..., -9.6890, -9.6369, -9.7516],
             [-9.6974, -9.6405, -9.6456,  ..., -9.6876, -9.6378, -9.7491],
             ...,
             [-9.6978, -9.6336, -9.6493,  ..., -9.6851, -9.6419, -9.7490],
             [-9.6971, -9.6334, -9.6487,  ..., -9.6863, -9.6411, -9.7501],
             [-9.6972, -9.6338, -9.6489,  ..., -9.6867, -9.6396, -9.7497]],
    
            ...,
    
            [[-9.7005, -9.6249, -9.6588,  ..., -9.6762, -9.6557, -9.7555],
             [-9.7028, -9.6266, -9.6597,  ..., -9.6765, -9.6574, -9.7542],
             [-9.7016, -9.6240, -9.6605,  ..., -9.6761, -9.6576, -9.7553],
             ...,
             [-9.7036, -9.6237, -9.6624,  ..., -9.6728, -9.6590, -9.7524],
             [-9.7034, -9.6235, -9.6620,  ..., -9.6735, -9.6589, -9.7530],
             [-9.7038, -9.6240, -9.6622,  ..., -9.6738, -9.6582, -9.7524]],
    
            [[-9.7058, -9.6305, -9.6566,  ..., -9.6739, -9.6557, -9.7466],
             [-9.7061, -9.6273, -9.6569,  ..., -9.6774, -9.6564, -9.7499],
             [-9.7046, -9.6280, -9.6576,  ..., -9.6772, -9.6575, -9.7498],
             ...,
             [-9.7060, -9.6263, -9.6609,  ..., -9.6714, -9.6561, -9.7461],
             [-9.7055, -9.6262, -9.6605,  ..., -9.6723, -9.6558, -9.7469],
             [-9.7058, -9.6270, -9.6606,  ..., -9.6725, -9.6552, -9.7460]],
    
            [[-9.7101, -9.6312, -9.6570,  ..., -9.6736, -9.6551, -9.7420],
             [-9.7102, -9.6307, -9.6579,  ..., -9.6733, -9.6576, -9.7418],
             [-9.7078, -9.6281, -9.6598,  ..., -9.6704, -9.6596, -9.7418],
             ...,
             [-9.7084, -9.6288, -9.6605,  ..., -9.6706, -9.6588, -9.7399],
             [-9.7081, -9.6286, -9.6600,  ..., -9.6714, -9.6584, -9.7406],
             [-9.7085, -9.6291, -9.6601,  ..., -9.6717, -9.6577, -9.7398]]],
           device='cuda:0', grad_fn=<LogSoftmaxBackward0>)
    
    (output_lengths)
    tensor([312, 260, 315, 320, 317, 275, 308, 291, 272, 300, 262, 227, 303, 252,
            298, 256, 303, 251, 284, 259, 263, 286, 209, 262, 166, 194, 149, 212,
            121, 114, 110,  57], device='cuda:0', dtype=torch.int32)
    
    (target_lengths)
    tensor([57, 55, 54, 50, 49, 49, 49, 48, 48, 47, 43, 42, 41, 40, 40, 39, 37, 37,
            36, 36, 36, 35, 34, 33, 29, 27, 26, 24, 20, 19, 17,  9])
    
    

    I am using the following code for training and evaluation

    import torch
    import time
    import sys
    from google.colab import output
    import torch.nn as nn
    from conformer import Conformer
    import torchmetrics
    import random
    
    cuda = torch.cuda.is_available()  
    device = torch.device('cuda' if cuda else 'cpu')
    print('Device:', device)
    
    ################################################################################
    
    def train_model(model, optimizer, criterion, loader, metric):
      running_loss = 0.0
      for i, (audio,audio_len, translations, translation_len) in enumerate(loader):
        # with output.use_tags('some_outputs'):
        #   sys.stdout.write('Batch: '+ str(i+1)+'/290')
        #   sys.stdout.flush();
    
        #sorting inputs and targets to have targets in descending order based on len
        sorted_list,sorted_indices=torch.sort(translation_len,descending=True)
    
        sorted_audio=torch.zeros((32,201,1963),dtype=torch.float)
        sorted_audio_len=torch.zeros(32,dtype=torch.int)
        sorted_translations=torch.zeros((32,78),dtype=torch.int)
        sorted_translation_len=sorted_list
    
        for index, contentof in enumerate(translation_len):
          sorted_audio[index]=audio[sorted_indices[index]]
          sorted_audio_len[index]=audio_len[sorted_indices[index]]
          sorted_translations[index]=translations[sorted_indices[index]]
    
        #transpose inputs from (batch, dim, seq_len) to (batch, seq_len, dim)
        inputs=sorted_audio.to(device)
        inputs=torch.transpose(inputs, 1, 2)
        input_lengths=sorted_audio_len
        targets=sorted_translations.to(device)
        target_lengths=sorted_translation_len
    
        optimizer.zero_grad()
      
        # Forward propagate
        outputs, output_lengths = model(inputs, input_lengths)
        # print(outputs)
    
        # Calculate CTC Loss
        loss = criterion(outputs.transpose(0, 1), targets, output_lengths, target_lengths)
    
        loss.backward()
        optimizer.step()
    
        # print statistics
        running_loss += loss.item()
    
        output.clear(output_tags='some_outputs')
    
      loss_per_epoch=running_loss/(i+1)
      # print(f'Loss: {loss_per_epoch:.3f}')
    
      return loss_per_epoch
    
    ################################################################################
    
    def eval_model(model, optimizer, criterion, loader, metric):
      running_loss = 0.0
      wer_calc=0.0
      random_index_per_epoch= random.randint(0, 178)
    
      for i, (audio,audio_len, translations, translation_len) in enumerate(loader):
        # with output.use_tags('some_outputs'):
        #   sys.stdout.write('Batch: '+ str(i+1)+'/72')
        #   sys.stdout.flush();
    
        #sorting inputs and targets to have targets in descending order based on len
        sorted_list,sorted_indices=torch.sort(translation_len,descending=True)
    
        sorted_audio=torch.zeros((32,201,1963),dtype=torch.float)
        sorted_audio_len=torch.zeros(32,dtype=torch.int)
        sorted_translations=torch.zeros((32,78),dtype=torch.int)
        sorted_translation_len=sorted_list
    
        for index, contentof in enumerate(translation_len):
          sorted_audio[index]=audio[sorted_indices[index]]
          sorted_audio_len[index]=audio_len[sorted_indices[index]]
          sorted_translations[index]=translations[sorted_indices[index]]
    
        #transpose inputs from (batch, dim, seq_len) to (batch, seq_len, dim)
        inputs=sorted_audio.to(device)
        inputs=torch.transpose(inputs, 1, 2)
        input_lengths=sorted_audio_len
        targets=sorted_translations.to(device)
        target_lengths=sorted_translation_len
    
        # Forward propagate
        outputs, output_lengths = model(inputs, input_lengths)
        # print(outputs)
    
        # Calculate CTC Loss
        loss = criterion(outputs.transpose(0, 1), targets, output_lengths, target_lengths)
    
        print(output_lengths)
        print(target_lengths)
        # outputs_in_words=words_vocab.convert_pred_to_words(outputs.transpose(0, 1))
        # targets_in_words=words_vocab.convert_pred_to_words(targets)
        # wer=metrics_calculation(metric, outputs_in_words,targets_in_words)
        
        break
    
        if (i==random_index_per_epoch):
            print(outputs_in_words,targets_in_words)
    
        running_loss += loss.item()
        # wer_calc += wer
    
        output.clear(output_tags='some_outputs')
    
      loss_per_epoch=running_loss/(i+1)
      wer_per_epoch=wer_calc/(i+1)
    
      return loss_per_epoch, wer_per_epoch
    
    ################################################################################
    
    def train_eval_model(epochs):
      #conformer model init
      model = nn.DataParallel(Conformer(num_classes=16121, input_dim=201, encoder_dim=32, num_encoder_layers=1)).to(device)
    
      # Optimizers specified in the torch.optim package
      optimizer = torch.optim.Adam(model.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)
    
      #loss function
      criterion = nn.CTCLoss().to(device)
    
      #metrics init
      metric=torchmetrics.WordErrorRate()
    
      for epoch in range(epochs):
        print("Epoch", epoch+1)
    
        ############################################################################
        #TRAINING      
        model.train()
        print("Training")
    
        # epoch_loss=train_model(model=model,optimizer=optimizer, criterion=criterion, loader=train_loader, metric=metric)
    
        # print(f'Loss: {epoch_loss:.3f}')
        # print(f'WER: {epoch_wer:.3f}')
    
        ############################################################################
        #EVALUATION
        model.train(False)
        print("Validation")
    
        epoch_val_loss, epoch_val_wer=eval_model(model=model,optimizer=optimizer, criterion=criterion, loader=test_loader, metric=metric)
        
        print(f'Loss: {epoch_val_loss:.3f}')     
        print(f'WER: {epoch_val_wer:.3f}')   
    
    ################################################################################
    
    def metrics_calculation(metric, predictions, targets):
        print(predictions)
        print(targets)
        wer=metric(predictions, targets)
    
        return wer
    
    
    
    train_eval_model(1)
    
    opened by jcgeo9 8
  • question about the relative shift function

    question about the relative shift function

    Hi @sooftware, thank you for coding this repo. I have a question about the relative shift function: https://github.com/sooftware/conformer/blob/c76ff16d01b149ae518f3fe66a3dd89c9ecff2fc/conformer/attention.py#L105 I don't quite understand how this function works. Could you elaborate on this?

    An example input and output of size 4 is shown below, which does not really make sense to me.

    Input:

    tensor([[[[-0.9623, -0.3168, -1.1478, -1.3076],
              [ 0.5907, -0.0391, -0.1849, -0.6368],
              [-0.3956,  0.2142, -0.6415,  0.2196],
              [-0.8194, -0.2601,  1.1337, -0.3478]]]])
    

    output:

    tensor([[[[-1.3076,  0.0000,  0.5907, -0.0391],
              [-0.1849, -0.6368,  0.0000, -0.3956],
              [ 0.2142, -0.6415,  0.2196,  0.0000],
              [-0.8194, -0.2601,  1.1337, -0.3478]]]])
    

    Thank you!

    opened by ChanganVR 6
  • Decoding predictions to strings

    Decoding predictions to strings

    Hi, thanks for the great repo.

    the README Usage example gives outputs as a torch tensor of ints. How would you suggest decoding these to strings (the actual speech)?

    Thanks!

    opened by Andrew-Brown1 3
  • mat1 and mat2 shapes cannot be multiplied (1323x9248 and 1568x32)

    mat1 and mat2 shapes cannot be multiplied (1323x9248 and 1568x32)

    These are the shapes of my input, input_len, target, target_len where batch size=27 image

    This is the setup I am running (only using first batch to check that is working before training with all the batches) image

    This is the error I am getting image

    I need some assistance here please:)

    opened by jcgeo9 2
  • error when reproducing the example of use (RuntimeError: Input tensor at index 1 has invalid shape [1, 3085, 8, 10], but expected [1, 3085, 9, 10])

    error when reproducing the example of use (RuntimeError: Input tensor at index 1 has invalid shape [1, 3085, 8, 10], but expected [1, 3085, 9, 10])

    Running the code results in an error:

    import torch
    print(torch.__version__)
    import torch.nn as nn
    from conformer import Conformer
    
    batch_size, sequence_length, dim = 3, 12345, 80
    
    cuda = torch.cuda.is_available()  
    device = torch.device('cuda' if cuda else 'cpu')
    
    inputs = torch.rand(batch_size, sequence_length, dim).to(device)
    input_lengths = torch.IntTensor([12345, 12300, 12000])
    targets = torch.LongTensor([[1, 3, 3, 3, 3, 3, 4, 5, 6, 2],
                                [1, 3, 3, 3, 3, 3, 4, 5, 2, 0],
                                [1, 3, 3, 3, 3, 3, 4, 2, 0, 0]]).to(device)
    target_lengths = torch.LongTensor([9, 8, 7])
    
    model = nn.DataParallel(Conformer(num_classes=10, input_dim=dim, 
                                      encoder_dim=32, num_encoder_layers=3, 
                                      decoder_dim=32, device=device)).to(device)
    
    # Forward propagate
    outputs = model(inputs, input_lengths, targets, target_lengths)
    
    # Recognize input speech
    outputs = model.module.recognize(inputs, input_lengths)
    
    
    
    1.9.0+cu111
    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    <ipython-input-12-eea3aeffaf58> in <module>
         21 
         22 # Forward propagate
    ---> 23 outputs = model(inputs, input_lengths, targets, target_lengths)
         24 
         25 # Recognize input speech
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
       1049         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
       1050                 or _global_forward_hooks or _global_forward_pre_hooks):
    -> 1051             return forward_call(*input, **kwargs)
       1052         # Do not call functions when jit is used
       1053         full_backward_hooks, non_full_backward_hooks = [], []
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py in forward(self, *inputs, **kwargs)
        167             replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
        168             outputs = self.parallel_apply(replicas, inputs, kwargs)
    --> 169             return self.gather(outputs, self.output_device)
        170 
        171     def replicate(self, module, device_ids):
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py in gather(self, outputs, output_device)
        179 
        180     def gather(self, outputs, output_device):
    --> 181         return gather(outputs, output_device, dim=self.dim)
        182 
        183 
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py in gather(outputs, target_device, dim)
         76     # Setting the function to None clears the refcycle.
         77     try:
    ---> 78         res = gather_map(outputs)
         79     finally:
         80         gather_map = None
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py in gather_map(outputs)
         61         out = outputs[0]
         62         if isinstance(out, torch.Tensor):
    ---> 63             return Gather.apply(target_device, dim, *outputs)
         64         if out is None:
         65             return None
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/_functions.py in forward(ctx, target_device, dim, *inputs)
         73             ctx.unsqueezed_scalar = False
         74         ctx.input_sizes = tuple(i.size(ctx.dim) for i in inputs)
    ---> 75         return comm.gather(inputs, ctx.dim, ctx.target_device)
         76 
         77     @staticmethod
    
    /opt/conda/lib/python3.8/site-packages/torch/nn/parallel/comm.py in gather(tensors, dim, destination, out)
        233                 'device object or string instead, e.g., "cpu".')
        234         destination = _get_device_index(destination, allow_cpu=True, optional=True)
    --> 235         return torch._C._gather(tensors, dim, destination)
        236     else:
        237         if destination is not None:
    
    RuntimeError: Input tensor at index 1 has invalid shape [1, 3085, 8, 10], but expected [1, 3085, 9, 10]
    

    I am using version Python 3.8.8. Which version should it work with?

    opened by sovse 2
  • The to.(self.device) in return

    The to.(self.device) in return

    The inputs.to(self.device) in ConformerConvmodule and FeedForwardModule will cause the network graph in tensorboard to fork and appear kind of messy. Is there any special reason to write like that? Since in most cases we should have send both the model and tensor to the device before we input the tensor to the model, probably no more sending action is needed?

    opened by panjiashu 2
  • Invalid size error when running usage in README

    Invalid size error when running usage in README

    Hello sooftware, thank you very much for your wonderful work!

    When I run the sample code in Usage of README:

    import torch
    import torch.nn as nn
    from conformer import Conformer
    
    batch_size, sequence_length, dim = 3, 12345, 80
    
    cuda = torch.cuda.is_available()  
    device = torch.device('cuda' if cuda else 'cpu')
    
    inputs = torch.rand(batch_size, sequence_length, dim).to(device)
    input_lengths = torch.IntTensor([12345, 12300, 12000])
    targets = torch.LongTensor([[1, 3, 3, 3, 3, 3, 4, 5, 6, 2],
                                [1, 3, 3, 3, 3, 3, 4, 5, 2, 0],
                                [1, 3, 3, 3, 3, 3, 4, 2, 0, 0]]).to(device)
    target_lengths = torch.LongTensor([9, 8, 7])
    
    model = nn.DataParallel(Conformer(num_classes=10, input_dim=dim, 
                                      encoder_dim=32, num_encoder_layers=3, 
                                      decoder_dim=32, device=device)).to(device)
    
    # Forward propagate
    outputs = model(inputs, input_lengths, targets, target_lengths)
    
    # Recognize input speech
    outputs = model.module.recognize(inputs, input_lengths)
    

    I got this error:

    Traceback (most recent call last):
      File "/home/xuchutian/ASR/sooftware-conformer/try.py", line 36, in <module>
        outputs = model(inputs, input_lengths, targets, target_lengths)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 550, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 156, in forward
        return self.gather(outputs, self.output_device)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 168, in gather
        return gather(outputs, output_device, dim=self.dim)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 68, in gather
        res = gather_map(outputs)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/scatter_gather.py", line 55, in gather_map
        return Gather.apply(target_device, dim, *outputs)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/nn/parallel/_functions.py", line 68, in forward
        return comm.gather(inputs, ctx.dim, ctx.target_device)
      File "/home/yangyi/anaconda3/lib/python3.8/site-packages/torch/cuda/comm.py", line 165, in gather
        return torch._C._gather(tensors, dim, destination)
    RuntimeError: Gather got an input of invalid size: got [1, 3085, 8, 10], but expected [1, 3085, 9, 10]
    

    May I ask how to solve this error?

    Thank you very much.

    opened by chutianxu 2
  • use relative import

    use relative import

    The import path is now absolute, which requires users to install or configuring the python path before using. However, this can be improved with relative import, so users can use the package without installing it first.

    opened by bridgream 1
  • Remove device from the argument list

    Remove device from the argument list

    This PR solve #33 by removing device from the argument list, which will require the user to manually put input tensors to device as done in the example code in README.

    The property solution mentioned in #33 is not adopted as it does work with nn.DataParallel.

    When the devices of input tensor and module parameters match, the following to device on the input tensor is not required, which are removed in this PR:

    https://github.com/sooftware/conformer/blob/348e8af6c156dae19e311697cbb22b9581880a12/conformer/encoder.py#L117

    Besides, as positional encoding is created from a buffer whose device is changed with the module, we don't have to call to device here, which is also removed in this PR.

    https://github.com/sooftware/conformer/blob/610a77667aafe533a85001298c522e7079503da4/conformer/attention.py#L147

    opened by enhuiz 1
  • Switching device

    Switching device

    Hi. I notice the model requires passing the device as an argument, which may have not been decided yet at the point of the module initialization. Once the device is decided, it seems we cannot easily change it. Do you consider making the device switchable? One solution may be instead of passing the device, add an attribute:

    @property
    def device(self):
        return next(self.parameters()).device
    
    opened by enhuiz 1
  • cannot import name 'Conformer'

    cannot import name 'Conformer'

    Hi when I tried to import conformer, I got this issue >>> from conformer import Conformer Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/workspace/bert/conformer/conformer.py", line 3, in <module> from conformer import Conformer ImportError: cannot import name 'Conformer' from partially initialized module 'conformer' (most likely due to a circular import) (/workspace/bert/conformer/conformer.py) I did as the installation instruction. Would you please see where I might be wrong? Thanks.

    opened by cyy857 1
  • Fix relative positional multi-head attention layer

    Fix relative positional multi-head attention layer

    I referred to fairseq's conformer layer multi-head attention. [code] I also confirmed that it is training.

    1. math.sqrt(dim) -> math.sqrt(d_head)
    2. Add relative positional encoding module
    3. Fix _relative_shift method - input : B X n_head X T X 2T-1 - output : B X n_head X T X T
    opened by upskyy 0
  • Feature Extraction using Pre-trained Conformer Model

    Feature Extraction using Pre-trained Conformer Model

    Is there any possibility to use pre-trained conformer model for feature extraction on another speech dataset. Have you uploaded your pre-trained model and is there any tutorial how to extract embeddings ? Thank you

    opened by shakeel608 0
  • export onnx

    export onnx

    Hi, I am a little confused, if I want to export the onnx, should I use the forward or the recognize function? The difference seems to be that in the recognize function, the decoder loop num is adaptive according to the encoder outputs

    opened by pengaoao 1
Releases(v1.0)
Owner
Soohwan Kim
Current AI Research Engineer at Kakao Brain.
Soohwan Kim
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022