Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Overview

Feature Engine

PythonVersion PyPI version License https://github.com/feature-engine/feature_engine/blob/master/LICENSE.md CircleCI https://app.circleci.com/pipelines/github/feature-engine/feature_engine?branch=master Documentation Status https://feature-engine.readthedocs.io/en/latest/index.html Join the chat at https://gitter.im/feature_engine/community Sponsorship https://www.trainindata.com/ Downloads Downloads Conda https://anaconda.org/conda-forge/feature_engine

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality with fit() and transform() methods to first learn the transforming parameters from data and then transform the data.

Feature-engine features in the following resources:

Blogs about Feature-engine:

Documentation

En Español:

More resources will be added as they appear online!

Current Feature-engine's transformers include functionality for:

  • Missing Data Imputation
  • Categorical Variable Encoding
  • Outlier Capping or Removal
  • Discretisation
  • Numerical Variable Transformation
  • Variable Creation
  • Variable Selection
  • Scikit-learn Wrappers

Imputing Methods

  • MeanMedianImputer
  • RandomSampleImputer
  • EndTailImputer
  • AddMissingIndicator
  • CategoricalImputer
  • ArbitraryNumberImputer
  • DropMissingData

Encoding Methods

  • OneHotEncoder
  • OrdinalEncoder
  • CountFrequencyEncoder
  • MeanEncoder
  • WoEEncoder
  • PRatioEncoder
  • RareLabelEncoder
  • DecisionTreeEncoder

Outlier Handling methods

  • Winsorizer
  • ArbitraryOutlierCapper
  • OutlierTrimmer

Discretisation methods

  • EqualFrequencyDiscretiser
  • EqualWidthDiscretiser
  • DecisionTreeDiscretiser
  • ArbitraryDiscreriser

Variable Transformation methods

  • LogTransformer
  • LogCpTransformer
  • ReciprocalTransformer
  • PowerTransformer
  • BoxCoxTransformer
  • YeoJohnsonTransformer

Scikit-learn Wrapper:

  • SklearnTransformerWrapper

Variable Creation:

  • MathematicalCombination
  • CombineWithReferenceFeature
  • CyclicalTransformer

Feature Selection:

  • DropFeatures
  • DropConstantFeatures
  • DropDuplicateFeatures
  • DropCorrelatedFeatures
  • SmartCorrelationSelection
  • ShuffleFeaturesSelector
  • SelectBySingleFeaturePerformance
  • SelectByTargetMeanPerformance
  • RecursiveFeatureElimination
  • RecursiveFeatureAddition

Installing

From PyPI using pip:

pip install feature_engine

From Anaconda:

conda install -c conda-forge feature_engine

Or simply clone it:

git clone https://github.com/feature-engine/feature_engine.git

Usage

>>> import pandas as pd
>>> from feature_engine.encoding import RareLabelEncoder

>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
>>> data = pd.DataFrame(data)
>>> data['var_A'].value_counts()
Out[1]:
A    10
B    10
C     2
D     1
Name: var_A, dtype: int64
>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
>>> data_encoded = rare_encoder.fit_transform(data)
>>> data_encoded['var_A'].value_counts()
Out[2]:
A       10
B       10
Rare     3
Name: var_A, dtype: int64

See more usage examples in the Jupyter Notebooks in the example folder of this repository, or in the documentation.

Contributing

Details about how to contribute can be found in the Contributing Page

In short:

Local Setup Steps

  • Fork the repo
  • Clone your fork into your local computer: git clone https://github.com/ /feature_engine.git
  • cd into the repo cd feature_engine
  • Install as a developer: pip install -e .
  • Create and activate a virtual environment with any tool of choice
  • Install the dependencies as explained in the Contributing Page
  • Create a feature branch with a meaningful name for your feature: git checkout -b myfeaturebranch
  • Develop your feature, tests and documentation
  • Make sure the tests pass
  • Make a PR

Thank you!!

Opening Pull Requests

PR's are welcome! Please make sure the CI tests pass on your branch.

Tests

We prefer tox. In your environment:

  • Run pip install tox
  • cd into the root directory of the repo: cd feature_engine
  • Run tox

If the tests pass, the code is functional.

You can also run the tests in your environment (without tox). For guidelines on how to do so, check the Contributing Page.

Documentation

Feature-engine documentation is built using Sphinx and is hosted on Read the Docs.

To build the documentation make sure you have the dependencies installed. From the root directory: pip install -r docs/requirements.txt.

Now you can build the docs: sphinx-build -b html docs build

License

BSD 3-Clause

References

Many of the engineering and encoding functionalities are inspired by this series of articles from the 2009 KDD Competition.

Owner
Soledad Galli
Data scientist, open-source developer, book author and machine learning instructor. Creator and maintainer of Feature-engine.
Soledad Galli
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Microsoft 5.6k Jan 07, 2023