Official code for HH-VAEM

Overview

HH-VAEM

This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the sampling-based feature acquisition technique presented in the paper Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo. HH-VAEM is a Hierarchical VAE model for mixed-type incomplete data that uses Hamiltonian Monte Carlo with automatic hyper-parameter tuning for improved approximate inference. The repository contains the implementation and the experiments provided in the paper.

Please, if you use this code, cite the preprint using:

@article{peis2022missing,
  title={Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo},
  author={Peis, Ignacio and Ma, Chao and Hern{\'a}ndez-Lobato, Jos{\'e} Miguel},
  journal={arXiv preprint arXiv:2202.04599},
  year={2022}
}

Instalation

The installation is straightforward using the following instruction, that creates a conda virtual environment named HH-VAEM using the provided file environment.yml:

conda env create -f environment.yml

Usage

Training

The project is developed in the recent research framework PyTorch Lightning. The HH-VAEM model is implemented as a LightningModule that is trained by means of a Trainer. A model can be trained by using:

# Example for training HH-VAEM on Boston dataset
python train.py --model HHVAEM --dataset boston --split 0

This will automatically download the boston dataset, split in 10 train/test splits and train HH-VAEM on the training split 0. Two folders will be created: data/ for storing the datasets and logs/ for model checkpoints and TensorBoard logs. The variable LOGDIR can be modified in src/configs.py to change the directory where these folders will be created (this might be useful for avoiding overloads in network file systems).

The following datasets are available:

  • A total of 10 UCI datasets: avocado, boston, energy, wine, diabetes, concrete, naval, yatch, bank or insurance.
  • The MNIST datasets: mnist or fashion_mnist.
  • More datasets can be easily added to src/datasets.py.

For each dataset, the corresponding parameter configuration must be added to src/configs.py.

The following models are also available (implemented in src/models/):

  • HHVAEM: the proposed model in the paper.
  • VAEM: the VAEM strategy presented in (Ma et al., 2020) with Gaussian encoder (without including the Partial VAE).
  • HVAEM: A Hierarchical VAEM with two layers of latent variables and a Gaussian encoder.
  • HMCVAEM: A VAEM that includes a tuned HMC sampler for the true posterior.
  • For MNIST datasets (non heterogeneous data), use HHVAE, VAE, HVAE and HMCVAE.

By default, the test stage will be executed at the end of the training stage. This can be cancelled with --test 0 for manually running the test using:

# Example for testing HH-VAEM on Boston dataset
python test.py --model HHVAEM --dataset boston --split 0

which will load the trained model to be tested on the boston test split number 0. Once all the splits are tested, the average results can be obtained using the script in the run/ folder:

# Example for obtaining the average test results with HH-VAEM on Boston dataset
python test_splits.py --model HHVAEM --dataset boston

Experiments

The experiments in the paper can be executed using:

# Example for running the SAIA experiment with HH-VAEM on Boston dataset
python active_learning.py --model HHVAEM --dataset boston --method mi --split 0

# Example for running the OoD experiment using MNIST and Fashion-MNIST as OoD:
python ood.py --model HHVAEM --dataset mnist --dataset_ood fashion_mnist --split 0

Once this is executed on all the splits, you can plot the SAIA error curves or obtain the average OoD metrics using the scripts in the run/ folder:

# Example for running the SAIA experiment with HH-VAEM on Boston dataset
python active_learning_plots.py --models VAEM HHVAEM --dataset boston

# Example for running the OoD experiment using MNIST and Fashion-MNIST as OoD:
python ood_splits.py --model HHVAEM --dataset mnist --dataset_ood fashion_mnist


Help

Use the --help option for documentation on the usage of any of the mentioned scripts.

Contributors

Ignacio Peis
Chao Ma
José Miguel Hernández-Lobato

Contact

For further information: [email protected]

Owner
Ignacio Peis
PhD student at UC3M \\ Visitor at the Machine Learning Group, CBL, University of Cambridge
Ignacio Peis
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.

7.4k Jan 04, 2023