Simulation of early COVID-19 using SIR model and variants (SEIR ...).

Overview

COVID-19-simulation

Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO) of the Federal Technologycal University - Parana (UTFPR-ct) in the scope of the project GYRO4Life

Running the simulation

The code runs based on a csv with the same structure of nc85.csv or oa85.csv files which has a time series of confirmed cases and deaths and metadata information about the region being characterized on the line. Both cases and deaths have to be given for the simulation.

The main code is simulação.py, which receives a couple of arguments:

  • 1: region code (for the csv being used). In case the argument is empty ("-"), it will run for all lines of the csv [ex: -28]
  • 2: Name of the csv file with confirmed cases (omit the '.csv') [ex: nc85.csv -> -nc85]
  • 2: Name of the csv file with confirmed deaths (omit the '.csv') [ex: oa85.csv -> -oa85]
  • 3: Fitting method [-0: basinhopp, -1: differential evolution [default], -2: powell, -3: cobyla] [ex: -1]
  • 4: Boolean and quantity of opening and closure regimes for the simulation for confirmed cases (works as a contingency method reducing the probability of infection). '-0-0' ignores this factor for a simulation without contingency methods. If a quantity is given on the second argument, the boolean argument must be 1 [ex: '-1-1']
  • 5: Boolean and quantity of opening and closure regimes for the simulation for confirmed deaths (works as a contingency method reducing the probability of infection). '-0-0' ignores this factor for a simulation without contingency methods. If a quantity is given on the second argument, the boolean argument must be 1 [ex: '-1-1']
  • 6: Type of simulation [-n: simulation of one location (one csv line), -s: simulation of all csv locations, -b: bootstrap of one location [has uncertainty], -sl: simulation of a location with sensibility analysis] [ex: -n]
  • 7: Simulation period in days [ex: -200]
  • 8: number of days for validation [ex: -5]
  • 9: Subtype of simulation [-mod: hospitalization simulation, -std: SEIR simulation with asymptomatic and deaths]
  • 10: Run tests and additional graphics [-0: no, -1: yes]

Example call for a SEIR simulation with bootstrap using cases and deaths in Brazil. The simulation is done for 200 days and with a validation of 5 days.

python simulacao.py -28 -nc85 -oa85 -1 -1-2-0-0 -b -200 -5 -str -0
Owner
José Paulo Pereira das Dores Savioli
José Paulo Pereira das Dores Savioli
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022