PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

Related tags

Deep Learningpiglet
Overview

piglet

PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like this paper, please cite us:

@inproceedings{zellers2021piglet,
    title={PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World},
    author={Zellers, Rowan and Holtzman, Ari and Peters, Matthew and Mottaghi, Roozbeh and Kembhavi, Aniruddha and Farhadi, Ali and Choi, Yejin},
    booktitle ={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics},
    year={2021}
}

See more at https://rowanzellers.com/piglet

What this repo contains

Physical dynamics model

  • You can get data yourself by sampling trajectories in sampler/ and then converting them to tfrecord (which is the format I used) in tfrecord/. I also have the exact tfrecords I used at gs://piglet-data/physical-interaction-tfrecords/ -- they're big files so I turned on 'requester pays' for them.
  • You can pretrain the model and evaluate it in model/interact/train.py and model/interact/intrinsic_eval.py
  • Alteratively feel free to use my checkpoint: gs://piglet/checkpoints/physical_dynamics_model/model.ckpt-5420

Language model

  • You can process data (also in tfrecord format) using data/zeroshot_lm_setup/prepare_zslm_tfrecord.py, or download at gs://piglet-data/text-data/. I have both 'zero-shot' tfrecord data, basically a version of BookCorpus and Wikipedia where certain concepts are filtered out, as well as non-zero shot (regularly processed). This was used to evaluate generalization to new concepts.
  • Train the model using model/lm/train.py
  • Alternatively, feel free to just use my checkpoint: gs://piglet/checkpoints/language_model/model.ckpt-20000

Tying it all together

  • Everything you need for this is in model/predict_statechange/ building on both the physical dynamics model and language model pretrained.
  • I have annotations in data/annotations.jsonl for training and evaluating both tasks -- PIGPeN-NLU and PIGPeN-NLG.
  • Alternatively you can download my checkpoints at gs://piglet/checkpoints/pigpen-nlu-model/ for NLU (predicting state change given english text) or gs://piglet/checkpoints/pigpen-nlg-model/ for NLG.

That's it!

Getting the environment set up

I used TPUs for this project so those are the only things I support right now, sorry!

I used tensorflow 1.15.5 and TPUs for this project. My recommendation is to use ctpu to start up a VM with access to a v3-8 TPU. Then, use the following command to install dependencies:

curl -o ~/miniconda.sh -O  https://repo.continuum.io/miniconda/Miniconda3-4.5.4-Linux-x86_64.sh  && \
     chmod +x ~/miniconda.sh && \
     ~/miniconda.sh -b -p ~/conda && \
     rm ~/miniconda.sh && \
     ~/conda/bin/conda install -y python=3.7 tqdm numpy pyyaml scipy ipython mkl mkl-include cython typing h5py pandas && ~/conda/bin/conda clean -ya
     
echo 'export PATH=~/conda/bin:$PATH' >>~/.bashrc
source ~/.bashrc
pip install "tensorflow==1.15.5"
pip install --upgrade google-api-python-client oauth2client
pip install -r requirements.txt
Owner
Rowan Zellers
Rowan Zellers
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt ZajÄ…c 22 Jul 20, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022