Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

Overview

PGNet

Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022,
CVPR 2022 (arXiv 2204.05041)

Abstract

Recent salient object detection (SOD) methods based on deep neural network have achieved remarkable performance. However, most of existing SOD models designed for low-resolution input perform poorly on high-resolution images due to the contradiction between the sampling depth and the receptive field size. Aiming at resolving this contradiction, we propose a novel one-stage framework called Pyramid Grafting Network (PGNet), using transformer and CNN backbone to extract features from different resolution images independently and then graft the features from transformer branch to CNN branch. An attention-based Cross-Model Grafting Module (CMGM) is proposed to enable CNN branch to combine broken detailed information more holistically, guided by different source feature during decoding process. Moreover, we design an Attention Guided Loss (AGL) to explicitly supervise the attention matrix generated by CMGM to help the network better interact with the attention from different models. We contribute a new Ultra-High-Resolution Saliency Detection dataset UHRSD, containing 5,920 images at 4K-8K resolutions. To our knowledge, it is the largest dataset in both quantity and resolution for high-resolution SOD task, which can be used for training and testing in future research. Sufficient experiments on UHRSD and widely-used SOD datasets demonstrate that our method achieves superior performance compared to the state-of-the-art methods.

Ultra High-Resolution Saliency Detection Dataset

Visual display for sample in UHRSD dataset. Best viewd by clikcing and zooming in.

To relief the lack of high-resolution datasets for SOD, we contribute the Ultra High-Resolution for Saliency Detection (UHRSD) dataset with a total of 5,920 images in 4K(3840 × 2160) or higher resolution, including 4,932 images for training and 988 images for testing. A total of 5,920 images were manually selected from websites (e.g. Flickr Pixabay) with free copyright. Our dataset is diverse in terms of image scenes, with a balance of complex and simple salient objects of various size.

To our knowledge, it is the largest dataset in both quantity and resolution for high-resolution SOD task, which can be used for training and testing in future research.

  • Our UHRSD (Ultra High-Resolution Saliency Detection) Dataset:

We provide the original 4K version and the convenient 2K version of our UHRSD (Ultra High-Resolution Saliency Detection) Dataset for download: Google Drive

Usage

Requirements

  • Python 3.8
  • Pytorch 1.7.1
  • OpenCV
  • Numpy
  • Apex
  • Timm

Directory

The directory should be like this:

-- src 
-- model (saved model)
-- pre (pretrained model)
-- result (saliency maps)
-- data (train dataset and test dataset)
   |-- DUTS-TR+HR
   |   |-- image
   |   |-- mask
   |-- UHRSOD+HRSOD
   |   |--image
   |   |--mask
   ...
   

Train

cd src
./train.sh
  • We implement our method by PyTorch and conduct experiments on 2 NVIDIA 2080Ti GPUs.
  • We adopt pre-trained ResNet-18 and Swin-B-224 as backbone networks, which are saved in PRE folder.
  • We train our method on 3 settings : DUTS-TR, DUTS-TR+HRSOD and UHRSD_TR+HRSOD_TR.
  • After training, the trained models will be saved in MODEL folder.

Test

The trained model can be download here: Google Drive

cd src
python test.py
  • After testing, saliency maps will be saved in RESULT folder

Saliency Map

Trained on DUTS-TR:Google Drive

Trained on DUT+HRSOD:Google Drive

Trained on UHRSD+HRSOD:Google Drive

Citation

@inproceedings{xie2022pyramid,
    author    = {Xie, Chenxi and Xia, Changqun and Ma, Mingcan and Zhao, Zhirui and Chen, Xiaowu and Li, Jia},
    title     = {Pyramid Grafting Network for One-Stage High Resolution Saliency Detection},
    booktitle = {CVPR},
    year      = {2022}
}
Owner
CVTEAM
CVTEAM
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022