PromptDet: Expand Your Detector Vocabulary with Uncurated Images

Overview

PromptDet: Expand Your Detector Vocabulary with Uncurated Images

Paper     Website

Introduction

The goal of this work is to establish a scalable pipeline for expanding an object detector towards novel/unseen categories, using zero manual annotations. To achieve that, we make the following four contributions: (i) in pursuit of generalisation, we propose a two-stage open-vocabulary object detector that categorises each box proposal by a classifier generated from the text encoder of a pre-trained visual-language model; (ii) To pair the visual latent space (from RPN box proposal) with that of the pre-trained text encoder, we propose the idea of regional prompt learning to optimise a couple of learnable prompt vectors, converting the textual embedding space to fit those visually object-centric images; (iii) To scale up the learning procedure towards detecting a wider spectrum of objects, we exploit the available online resource, iteratively updating the prompts, and later self-training the proposed detector with pseudo labels generated on a large corpus of noisy, uncurated web images. The self-trained detector, termed as PromptDet, significantly improves the detection performance on categories for which manual annotations are unavailable or hard to obtain, e.g. rare categories. Finally, (iv) to validate the necessity of our proposed components, we conduct extensive experiments on the challenging LVIS and MS-COCO dataset, showing superior performance over existing approaches with fewer additional training images and zero manual annotations whatsoever.

Training framework

method overview

Prerequisites

  • MMDetection version 2.16.0.

  • Please see get_started.md for installation and the basic usage of MMDetection.

Inference

./tools/dist_test.sh configs/promptdet/promptdet_mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py work_dirs/promptdet_mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.pth 4 --eval bbox segm

Train

To be updated.

Models

For your convenience, we provide the following trained models (PromptDet) with mask AP.

Model Epochs Scale Jitter Input Size APnovel APc APf AP Config Download
PromptDet_R_50_FPN_1x 12 640~800 800x800 19.0 18.5 25.8 21.4 config google / baidu
PromptDet_R_50_FPN_6x 72 100~1280 800x800 21.4 23.3 29.3 25.3 config google / baidu

[0] All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..
[1] Refer to more details in config files in config/promptdet/.
[2] Extraction code of baidu netdisk: promptdet.

Acknowledgement

Thanks MMDetection team for the wonderful open source project!

Citation

If you find PromptDet useful in your research, please consider citing:

@inproceedings{feng2022promptdet,
    title={PromptDet: Expand Your Detector Vocabulary with Uncurated Images},
    author={Feng, Chengjian and Zhong, Yujie and Jie, Zequn and Chu, Xiangxiang and Ren, Haibing and Wei, Xiaolin and Xie, Weidi and Ma, Lin},
    journal={arXiv preprint arXiv:2203.16513},
    year={2022}
}
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022