edge-SR: Super-Resolution For The Masses

Related tags

Text Data & NLPeSR
Overview

edge-SR: Super Resolution For The Masses

Citation

Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses", in IEEE Winter conference on Applications of Computer Vision (WACV), 2022.

BibTeX

@inproceedings{eSR,
    title     = {edge--{SR}: Super--Resolution For The Masses},
    author    = {Navarrete~Michelini, Pablo and Lu, Yunhua and Jiang, Xingqun},
    booktitle = {Proceedings of the {IEEE/CVF} Winter Conference on Applications of Computer Vision ({WACV})},
    month     = {January},
    year      = {2022},
    pages     = {1078--1087},
    url       = {https://arxiv.org/abs/2108.10335}
}

Instructions:

  • Place input images in input directory (provided as empty directory). Color images will be converted to grayscale.

  • To upscale images run: python run.py.

    Output images will come out in output directory.

  • The GPU number and model file can be changed in run.py (in comment "CHANGE HERE").

Requirements:

  • Python 3, PyTorch, NumPy, Pillow, OpenCV

Experiment results

  • The data directory contains the file tests.pkl that has the Python dictionary with all our test results on different devices. The following sample code shows how to read the file:
>>> import pickle
>>> test = pickle.load(open('tests.pkl', 'rb'))
>>> test['Bicubic_s2']
    {'psnr_Set5': 33.72849620514912,
     'ssim_Set5': 0.9283912810369976,
     'lpips_Set5': 0.14221979230642318,
     'psnr_Set14': 30.286027790636204,
     'ssim_Set14': 0.8694934108301432,
     'lpips_Set14': 0.19383049915943826,
     'psnr_BSDS100': 29.571233006609656,
     'ssim_BSDS100': 0.8418117904964167,
     'lpips_BSDS100': 0.26246454380452633,
     'psnr_Urban100': 26.89378248655882,
     'ssim_Urban100': 0.8407461069831571,
     'lpips_Urban100': 0.21186692919582129,
     'psnr_Manga109': 30.850672809780587,
     'ssim_Manga109': 0.9340133711400112,
     'lpips_Manga109': 0.102985977955641,
     'parameters': 104,
     'speed_AGX': 18.72132628065749,
     'power_AGX': 1550,
     'speed_MaxQ': 632.5429857814075,
     'power_MaxQ': 50,
     'temperature_MaxQ': 76,
     'memory_MaxQ': 2961,
     'speed_RPI': 11.361346064182795,
     'usage_RPI': 372.8714285714285}

The keys of the dictionary identify the name of each model and its hyper--parameters using the following format:

  • Bicubic_s#,
  • eSR-MAX_s#_K#_C#,
  • eSR-TM_s#_K#_C#,
  • eSR-TR_s#_K#_C#,
  • eSR-CNN_s#_C#_D#_S#,
  • ESPCN_s#_D#_S#, or
  • FSRCNN_s#_D#_S#_M#,

where # represents an integer number with the value of the correspondent hyper-parameter. For each model the data of the dictionary contains a second dictionary with the information displayed above. This includes: number of model parameters; image quality metrics PSNR, SSIM and LPIPS measured in 5 different datasets; as well as power, speed, CPU usage, temperature and memory usage for devices AGX (Jetson AGX Xavier), MaxQ (GTX 1080 MaxQ) and RPI (Raspberry Pi 400).

Owner
Pablo
Pablo
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022