Extracting Summary Knowledge Graphs from Long Documents

Overview

GraphSum

This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other baseline TTG is simply based on BertSumExt.

Environment Setup

This code is tested on python 3.6.9, transformer 3.0.2 and pytorch 1.7.0. You would also need numpy and scipy packages.

Data

Download and unzip the data from this link. Put the unzipped folder named as ./data parallel with ./src. You should see four subfolders under ./data/json, corresponding to four data splits as described in the paper.

Under each subfolder, the json file contains all document full texts, abstracts as well as the summarized graphs obtained from the abstract, organized by the document keys. Each full text consists of a list of sections. Each summarized graph contains a list of entity and relation mentions. Except for the test split, other three data splits have their summarized graphs obtained by running DyGIE++ on the abstract. The test set have manually annotated summarized graphs from SciERC dataset. The format of the graph follows the output of DyGIE++, where each entity mention in a section is represented by (start token id, end token id, entity type) and each relation mention is represented by (start token id of entity 1, end token id of entity 1, start token id of entity 2, end token id of entity 2, relation type). The graph also contains a list of coreferential entity mentions.

You should also see two subfolders under the processed folder of each data split: merged_entities and aligned_entities. merged_entities contains the full and summarized graphs for each document, where the graph vertices are cluster of entity mentions. Entity clusters in each summarized graph are coreferential entity mentions predicted by DyGIE++ or annotated (in test set). Entity clusters in each full graph contains entity mentions that are coreferences or share the same non-generic string names (as described in our paper). Under merged_entities, we provide entity clusters and relations between entity clusters, as well as corresponding entity and relation mentions in the full paper or abstract. Each relation is represented by "[entity cluster id 1]_[entity cluster id 2]_[relation type]". The original full graphs with all entity and relation mentions are obtained by running DyGIE++ on the document full text. You don't need them to run the code, but you can find them here. For some entity names, you may see a trailing string "<GENERIC_ID> [number]". It means these entity names are classified by DyGIE++ as "generic" and the trailing string is used to differentiate the same entity name strings in different clusters in such cases.

aligned_entities contains the pre-calculated alignment between entity clusters (see Section 5.1 in the paper) in the summarized and full graphs for each document. In each entity alignment file, under each entity cluster of the summarized graph, there is a list of entity clusters from the full graph if the list is not empty. They are used to facilitate data preprocessing of G2G and evaluation.

Training and Evaluation

The model is based on GAT. Go to ./src and run bash run.sh. You can also find the pretrained model here. Put it under ./src/output and run the inference and evaluation parts in ./src/run.sh.

Owner
Zeqiu (Ellen) Wu
PhD Student at UW NLP Research Group
Zeqiu (Ellen) Wu
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
Seonghwan Kim 24 Sep 11, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022