NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

Overview

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT

License: MIT docs

Still in alpha, lots of changes anticipated. View demo on neuralqa.fastforwardlabs.com.

NeuralQA provides an easy to use api and visual interface for Extractive Question Answering (QA), on large datasets. The QA process is comprised of two main stages - Passage retrieval (Retriever) is implemented using ElasticSearch and Document Reading (Reader) is implemented using pretrained BERT models via the Huggingface Transformers api.

Usage

pip3 install neuralqa

Create (or navigate to) a folder you would like to use with NeuralQA. Run the following command line instruction within that folder.

neuralqa ui --port 4000

navigate to http://localhost:4000/#/ to view the NeuralQA interface. Learn about other command line options in the documentation here or how to configure NeuralQA to use your own reader models or retriever instances.

Note: To use NeuralQA with a retriever such as ElasticSearch, follow the instructions here to download, install, and launch a local elasticsearch instance and add it to your config.yaml file.

How Does it Work?

NeuralQA is comprised of several high level modules:

  • Retriever: For each search query (question), scan an index (elasticsearch), and retrieve a list of candidate matched passages.

  • Reader: For each retrieved passage, a BERT based model predicts a span that contains the answer to the question. In practice, retrieved passages may be lengthy and BERT based models can process a maximum of 512 tokens at a time. NeuralQA handles this in two ways. Lengthy passages are chunked into smaller sections with a configurable stride. Secondly, NeuralQA offers the option of extracting a subset of relevant snippets (RelSnip) which a BERT reader can then scan to find answers. Relevant snippets are portions of the retrieved document that contain exact match results for the search query.

  • Expander: Methods for generating additional (relevant) query terms to improve recall. Currently, we implement Contextual Query Expansion using finetuned Masked Language Models. This is implemented via a user in the loop flow where the user can choose to include any suggested expansion terms.

  • User Interface: NeuralQA provides a visual user interface for performing queries (manual queries where question and context are provided as well as queries over a search index), viewing results and also sensemaking of results (reranking of passages based on answer scores, highlighting keyword match, model explanations).

Configuration

Properties of modules within NeuralQA (ui, retriever, reader, expander) can be specified via a yaml configuration file. When you launch the ui, you can specify the path to your config file --config-path. If this is not provided, NeuralQA will search for a config.yaml in the current folder or create a default copy) in the current folder. Sample configuration shown below:

ui:
  queryview:
    intro:
      title: "NeuralQA: Question Answering on Large Datasets"
      subtitle: "Subtitle of your choice"
    views: # select sections of the ui to hide or show
      intro: True
      advanced: True
      samples: False
      passages: True
      explanations: True
      allanswers: True
    options: # values for advanced options
      stride: ..
      maxpassages: ..
      highlightspan: ..

  header: # header tile for ui
    appname: NeuralQA
    appdescription: Question Answering on Large Datasets

reader:
  title: Reader
  selected: twmkn9/distilbert-base-uncased-squad2
  options:
    - name: DistilBERT SQUAD2
      value: twmkn9/distilbert-base-uncased-squad2
      type: distilbert
    - name: BERT SQUAD2
      value: deepset/bert-base-cased-squad2
      type: bert

Documentation

An attempt is being made to better document NeuralQA here - https://victordibia.github.io/neuralqa/.

Citation

A paper introducing NeuralQA and its components can be found here.

@article{dibia2020neuralqa,
    title={NeuralQA: A Usable Library for Question Answering (Contextual Query Expansion + BERT) on Large Datasets},
    author={Victor Dibia},
    year={2020},
    journal={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations}
}
Owner
Victor Dibia
Research Engineer at Cloudera Fast Forward Labs, developer, designer! Interested in the intersection of Applied AI and HCI.
Victor Dibia
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
A retro text-to-speech bot for Discord

hawking A retro text-to-speech bot for Discord, designed to work with all of the stuff you might've seen in Moonbase Alpha, using the existing command

Nick Schorr 23 Dec 25, 2022
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
"Investigating the Limitations of Transformers with Simple Arithmetic Tasks", 2021

transformers-arithmetic This repository contains the code to reproduce the experiments from the paper: Nogueira, Jiang, Lin "Investigating the Limitat

Castorini 33 Nov 16, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021