NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

Overview

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT

License: MIT docs

Still in alpha, lots of changes anticipated. View demo on neuralqa.fastforwardlabs.com.

NeuralQA provides an easy to use api and visual interface for Extractive Question Answering (QA), on large datasets. The QA process is comprised of two main stages - Passage retrieval (Retriever) is implemented using ElasticSearch and Document Reading (Reader) is implemented using pretrained BERT models via the Huggingface Transformers api.

Usage

pip3 install neuralqa

Create (or navigate to) a folder you would like to use with NeuralQA. Run the following command line instruction within that folder.

neuralqa ui --port 4000

navigate to http://localhost:4000/#/ to view the NeuralQA interface. Learn about other command line options in the documentation here or how to configure NeuralQA to use your own reader models or retriever instances.

Note: To use NeuralQA with a retriever such as ElasticSearch, follow the instructions here to download, install, and launch a local elasticsearch instance and add it to your config.yaml file.

How Does it Work?

NeuralQA is comprised of several high level modules:

  • Retriever: For each search query (question), scan an index (elasticsearch), and retrieve a list of candidate matched passages.

  • Reader: For each retrieved passage, a BERT based model predicts a span that contains the answer to the question. In practice, retrieved passages may be lengthy and BERT based models can process a maximum of 512 tokens at a time. NeuralQA handles this in two ways. Lengthy passages are chunked into smaller sections with a configurable stride. Secondly, NeuralQA offers the option of extracting a subset of relevant snippets (RelSnip) which a BERT reader can then scan to find answers. Relevant snippets are portions of the retrieved document that contain exact match results for the search query.

  • Expander: Methods for generating additional (relevant) query terms to improve recall. Currently, we implement Contextual Query Expansion using finetuned Masked Language Models. This is implemented via a user in the loop flow where the user can choose to include any suggested expansion terms.

  • User Interface: NeuralQA provides a visual user interface for performing queries (manual queries where question and context are provided as well as queries over a search index), viewing results and also sensemaking of results (reranking of passages based on answer scores, highlighting keyword match, model explanations).

Configuration

Properties of modules within NeuralQA (ui, retriever, reader, expander) can be specified via a yaml configuration file. When you launch the ui, you can specify the path to your config file --config-path. If this is not provided, NeuralQA will search for a config.yaml in the current folder or create a default copy) in the current folder. Sample configuration shown below:

ui:
  queryview:
    intro:
      title: "NeuralQA: Question Answering on Large Datasets"
      subtitle: "Subtitle of your choice"
    views: # select sections of the ui to hide or show
      intro: True
      advanced: True
      samples: False
      passages: True
      explanations: True
      allanswers: True
    options: # values for advanced options
      stride: ..
      maxpassages: ..
      highlightspan: ..

  header: # header tile for ui
    appname: NeuralQA
    appdescription: Question Answering on Large Datasets

reader:
  title: Reader
  selected: twmkn9/distilbert-base-uncased-squad2
  options:
    - name: DistilBERT SQUAD2
      value: twmkn9/distilbert-base-uncased-squad2
      type: distilbert
    - name: BERT SQUAD2
      value: deepset/bert-base-cased-squad2
      type: bert

Documentation

An attempt is being made to better document NeuralQA here - https://victordibia.github.io/neuralqa/.

Citation

A paper introducing NeuralQA and its components can be found here.

@article{dibia2020neuralqa,
    title={NeuralQA: A Usable Library for Question Answering (Contextual Query Expansion + BERT) on Large Datasets},
    author={Victor Dibia},
    year={2020},
    journal={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations}
}
Owner
Victor Dibia
Research Engineer at Cloudera Fast Forward Labs, developer, designer! Interested in the intersection of Applied AI and HCI.
Victor Dibia
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
Full Spectrum Bioinformatics - a free online text designed to introduce key topics in Bioinformatics using the Python

Full Spectrum Bioinformatics is a free online text designed to introduce key topics in Bioinformatics using the Python programming language. The text is written in interactive Jupyter Notebooks, whic

Jesse Zaneveld 33 Dec 28, 2022
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022