Release for Improved Denoising Diffusion Probabilistic Models

Overview

improved-diffusion

This is the codebase for Improved Denoising Diffusion Probabilistic Models.

Usage

This section of the README walks through how to train and sample from a model.

Installation

Clone this repository and navigate to it in your terminal. Then run:

pip install -e .

This should install the improved_diffusion python package that the scripts depend on.

Preparing Data

The training code reads images from a directory of image files. In the datasets folder, we have provided instructions/scripts for preparing these directories for ImageNet, LSUN bedrooms, and CIFAR-10.

For creating your own dataset, simply dump all of your images into a directory with ".jpg", ".jpeg", or ".png" extensions. If you wish to train a class-conditional model, name the files like "mylabel1_XXX.jpg", "mylabel2_YYY.jpg", etc., so that the data loader knows that "mylabel1" and "mylabel2" are the labels. Subdirectories will automatically be enumerated as well, so the images can be organized into a recursive structure (although the directory names will be ignored, and the underscore prefixes are used as names).

The images will automatically be scaled and center-cropped by the data-loading pipeline. Simply pass --data_dir path/to/images to the training script, and it will take care of the rest.

Training

To train your model, you should first decide some hyperparameters. We will split up our hyperparameters into three groups: model architecture, diffusion process, and training flags. Here are some reasonable defaults for a baseline:

MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

Here are some changes we experiment with, and how to set them in the flags:

  • Learned sigmas: add --learn_sigma True to MODEL_FLAGS
  • Cosine schedule: change --noise_schedule linear to --noise_schedule cosine
  • Reweighted VLB: add --use_kl True to DIFFUSION_FLAGS and add --schedule_sampler loss-second-moment to TRAIN_FLAGS.
  • Class-conditional: add --class_cond True to MODEL_FLAGS.

Once you have setup your hyper-parameters, you can run an experiment like so:

python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

You may also want to train in a distributed manner. In this case, run the same command with mpiexec:

mpiexec -n $NUM_GPUS python scripts/image_train.py --data_dir path/to/images $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

When training in a distributed manner, you must manually divide the --batch_size argument by the number of ranks. In lieu of distributed training, you may use --microbatch 16 (or --microbatch 1 in extreme memory-limited cases) to reduce memory usage.

The logs and saved models will be written to a logging directory determined by the OPENAI_LOGDIR environment variable. If it is not set, then a temporary directory will be created in /tmp.

Sampling

The above training script saves checkpoints to .pt files in the logging directory. These checkpoints will have names like ema_0.9999_200000.pt and model200000.pt. You will likely want to sample from the EMA models, since those produce much better samples.

Once you have a path to your model, you can generate a large batch of samples like so:

python scripts/image_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS

Again, this will save results to a logging directory. Samples are saved as a large npz file, where arr_0 in the file is a large batch of samples.

Just like for training, you can run image_sample.py through MPI to use multiple GPUs and machines.

You can change the number of sampling steps using the --timestep_respacing argument. For example, --timestep_respacing 250 uses 250 steps to sample. Passing --timestep_respacing ddim250 is similar, but uses the uniform stride from the DDIM paper rather than our stride.

To sample using DDIM, pass --use_ddim True.

Owner
OpenAI
OpenAI
The fundamentals of Python!

The fundamentals of Python Author: Mohamed NIANG, Staff ML Scientist Presentation This repository contains notebooks on the fundamentals of Python. Th

Mohamed NIANG 1 Mar 15, 2022
Safely pass trusted data to untrusted environments and back.

ItsDangerous ... so better sign this Various helpers to pass data to untrusted environments and to get it back safe and sound. Data is cryptographical

The Pallets Projects 2.6k Jan 01, 2023
Understanding the field usage of any object in Salesforce

Understanding the field usage of any object in Salesforce One of the biggest problems that I have addressed while working with Salesforce is to unders

Sebastian Undurraga 1 Dec 14, 2021
Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD).

Data loader (and downloader) for Solar Orbiter/EPD energetic charged particle sensors EPT, HET, and STEP. Supports level 2 and low latency data provided by ESA's Solar Orbiter Archive.

Jan Gieseler 9 Dec 16, 2022
A bot to use in a pump & dump event

A bot to use in a pump & dump event on Binance.com. Please note the bot is in heavy devleopment currently so be aware of errors. If you experience err

Freddie Jonas 189 Dec 24, 2022
Button paginator using discord_components

Button Paginator With discord-components Button paginator using discord_components Welcome! It's a paginator for discord-componets! Thanks to the orig

Decave 7 Feb 12, 2022
Dump Data from FTDI Serial Port to Binary File on MacOS

Dump Data from FTDI Serial Port to Binary File on MacOS

pandy song 1 Nov 24, 2021
A tool to replace all osu beatmap backgrounds at once.

OsuBgTool A tool to replace all osu beatmap backgrounds at once. Requirements You need to have python 3.6 or newer installed. That's it. How to Use Ju

Aditya Gupta 1 Oct 24, 2021
Tensorboard plugin 3d with python

tensorboard-plugin-3d Overview In this example, we render a run selector dropdown component. When the user selects a run, it shows a preview of all sc

KitwareMedical 26 Nov 14, 2022
This repository contains a lot of short scripting programs implemented both in Python (Flask) and TypeScript (NodeJS).

fast-scripts This repository contains a lot of short scripting programs implemented both in Python (Flask) and TypeScript (NodeJS). In python These wi

Nahum Maurice 3 Dec 10, 2022
JSEngine is a simple wrapper of Javascript engines.

JSEngine This is a simple wrapper of Javascript engines, it wraps the Javascript interpreter for Python use. There are two ways to call interpreters,

11 Dec 18, 2022
Standard mutable string (character array) implementation for Python.

chararray A standard mutable character array implementation for Python.

Tushar Sadhwani 3 Dec 18, 2021
Interactivity Lab: Household Pulse Explorable

Interactivity Lab: Household Pulse Explorable Goal: Build an interactive application that incorporates fundamental Streamlit components to offer a cur

1 Feb 10, 2022
Python library and cli util for https://www.zerochan.net/

Zerochan Library for Zerochan.net with pics parsing and downloader included! Features CLI utility for pics downloading from zerochan.net Library for c

kiriharu 10 Oct 11, 2022
Job Guy Backend

جاب‌گای چیست؟ اونجا وضعیت چطوریه؟ یه سوال به همین کلیت و ابهام معمولا وقتی برای یه شرکت رزومه می‌فرستیم این سوال کلی و بزرگ برای همه پیش میاد.اونجا وض

Jobguy.work 217 Dec 25, 2022
Adam with minor modifications which give significant improvement

BAdam Modification of Adam [1] optimizer with increased stability and better performance. Tricks used: Decoupled weight decay as in AdamW [2]. Such de

19 May 11, 2022
Snek-test - An operating system kernel made in python and assembly

pythonOS An operating system kernel made in python and assembly Wait what? It us

TechStudent10 2 Jan 25, 2022
Random pass word generator made with python. PyQt5 module is used to design GUI.

Differences in this GUI program : Default titlebar removed Custom Minimize,Maximize and Close Buttons Drag & move window from any point Program work l

Dimuth De Zoysa 1 Jan 26, 2022
Repo contains Python Code Reference to learn Python in a week, It also contains Machine Learning Algorithms and some examples for Practice, Also contains MySql, Tableau etc

DataScience_ML_and_Python Repo contains Python Code Reference to learn Python in a week, It also contains Machine Learning Algorithms and some example

Meerabo D Shah 1 Jan 17, 2022
ARK sõidueksami Matrixi bot

ARK Sõidueksami bot Küsib ARK-i lehelt uusimad eksami ajad ja saadab sõnumi Matrixi kanali Dev setup Linux python3 -m venv venv source venv/bin/activa

Arti Zirk 3 Jun 15, 2021