Understanding the field usage of any object in Salesforce

Overview

Understanding the field usage of any object in Salesforce

One of the biggest problems that I have addressed while working with Salesforce is to understand and evaluate the field usage of a custom object. This application does the work for you, generating a CSV/Excel file with the date of the last record that used each field, and the percentage of use across all of them.

To make this app work, you will need a System Administrator credential to log into Salesforce
This app is currently working with the Spyder IDE, which is part of Anaconda


Let's understand how it works!

Dependencies

First, we need our dependencies. We will use Pandas, datetime and Simple Salesforce

from simple_salesforce import Salesforce
import pandas as pd
import datetime

Credentials

Next, we are going to connect to Salesforce with Simple Salesforce

  sf = Salesforce(password='password',
            username='username',
            organizationId='organizationId')

Your organizationId should look like this, 00JH0000000tYml.
To find it, just follow the next steps (Lightning experience):

  • Log into Salesforce with your System Administrator credentials
  • Press the gear button
  • Press Setup, (setup for current app)
  • In the quick search bar (the one in the left) type Company Information
  • Click Company Information
  • Finally, look for Salesforce.com Organization ID. The ID will look like 00JH0000000tYml

The Object

Now you will need to plug the object name. The object name is the API Name of the object. Normally, if it is a custom object, it will finish like this, __c
To find the API NAME just follow these instructions:

  • Log into Salesforce with your System Administrator credentials
  • Press the gear button
  • Press Setup, (setup for current app)
  • Click on Object Manager in the header of the page
  • Find your object using the name and copy the API NAME which is next to the name of the object

This part of the code if going to use the name of the object to bring all the fields
  object_to_evaluate = "object"
  object_fields = getattr(sf, object_to_evaluate).describe()

The Date

This part is important and will make you think. The default code is going to bring the data from the last year. Is important to understand what happened during that period. If you release a new field a week ago, it will show that it was use a couple of days ago, but the usage will be really low, around a 2% (7/365). You can change the days to evaluate simple change the 365 for the number of days that you want.

last_year = (datetime.datetime.now() + datetime.timedelta(days=-365)).strftime("%Y-%m-%d"+"T"+"%H:%M:%S"+"Z")

The Result

Now we are going to iterate all the fields and get the created date from the last record that used the field, and the number of records that use that field during the period (one year).

{} \ AND {} != null \ ORDER BY Id DESC \ LIMIT 1".format(object_to_evaluate, last_year , field['name']) )['records']) field_detail['Field Name'] = field['name'] field_detail['Field Label'] = field['label'] field_detail['Found?'] = 'Yes' field_quantity = pd.DataFrame( sf.query("SELECT count(Id) \ FROM {} \ WHERE createddate > {} \ AND {} != null".format(object_to_evaluate, last_year , field['name']) ))['records'][0]['expr0'] field_detail['Quantity'] = field_quantity data.append(field_detail) if field_detail.empty: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['Yes, no data']} data.append(pd.DataFrame(error_data)) except: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['No']} data.append(pd.DataFrame(error_data)) # Concatenate the list of result into one dataframe data_to_csv = pd.concat(data, ignore_index=True)">
for field in object_fields['fields']:
    print(field['name'])
    try:
        field_detail = pd.DataFrame(
            sf.query("SELECT Id, createddate, SystemModStamp \
                      FROM {} \
                      WHERE createddate > {} \
                        AND {} != null \
                      ORDER BY Id DESC \
                      LIMIT 1".format(object_to_evaluate, last_year , field['name'])
                      )['records'])

        field_detail['Field Name'] = field['name']
        field_detail['Field Label'] = field['label']
        field_detail['Found?'] = 'Yes'

        field_quantity = pd.DataFrame(
            sf.query("SELECT count(Id) \
                    FROM {} \
                    WHERE createddate > {} \
                    AND {} != null".format(object_to_evaluate, last_year , field['name'])
                    ))['records'][0]['expr0']

        field_detail['Quantity'] = field_quantity                        
        data.append(field_detail)

        if field_detail.empty:
            error_data = {'Field Name': [field['name']],
                          'Field Label': [field['label']] , 
                          'Found?': ['Yes, no data']}
            data.append(pd.DataFrame(error_data))
    except:
        error_data = {'Field Name': [field['name']],
                      'Field Label': [field['label']] , 
                      'Found?': ['No']}
        data.append(pd.DataFrame(error_data))

# Concatenate the list of result into one dataframe
data_to_csv = pd.concat(data, ignore_index=True)

Some Formatting

Formatting is a nice to have to understand the result, especially if you are going to share the insights. We are going to rename some columns, format the dates column in a way that CSV/Excel can understand, and we are adding a % of use column.

data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True)
data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date
data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date
data_to_csv = data_to_csv.drop('attributes', axis=1)
max_value = data_to_csv['Quantity'].max()
data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value

The Files

Finally, we are going to export the files to CSV and Excel, so you can choose which one you prefer to use. The files will be stored in the same folder as the app. So, if you are running this app in your Desktop folder, the CSV and Excel files will be store in the same folder.

data_to_csv.to_csv('last Field Usage Date.csv')
data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")

If you like it, remember to
Buy Me A Coffee


The final code will look like this:

{} \ AND {} != null \ ORDER BY Id DESC \ LIMIT 1".format(object_to_evaluate, last_year , field['name']) )['records']) field_detail['Field Name'] = field['name'] field_detail['Field Label'] = field['label'] field_detail['Found?'] = 'Yes' field_quantity = pd.DataFrame( sf.query("SELECT count(Id) \ FROM {} \ WHERE createddate > {} \ AND {} != null".format(object_to_evaluate, last_year , field['name']) ))['records'][0]['expr0'] field_detail['Quantity'] = field_quantity data.append(field_detail) if field_detail.empty: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['Yes, no data']} data.append(pd.DataFrame(error_data)) except: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['No']} data.append(pd.DataFrame(error_data)) # Concatenate the list of result into one dataframe data_to_csv = pd.concat(data, ignore_index=True) # Format the CSV/Excel report data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True) data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date data_to_csv = data_to_csv.drop('attributes', axis=1) max_value = data_to_csv['Quantity'].max() data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value # Export the data to a CSV/Excel file data_to_csv.to_csv('last Field Usage Date.csv') data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")">
from simple_salesforce import Salesforce
import pandas as pd
import datetime

# Connection to Salesforce
sf = Salesforce(password='password',
                username='username',
                organizationId='organizationId')


# Change the name to the object that you want to evaluate. If is a custom object remember to end it with __c
object_to_evaluate = "object"

# Get all the fields from the Object
object_fields = getattr(sf, object_to_evaluate).describe()

# Define an empty list to append the information
data = []

# Create a date variable to define from when we want to get the data
last_year = (datetime.datetime.now() + datetime.timedelta(days=-365)).strftime("%Y-%m-%d"+"T"+"%H:%M:%S"+"Z")

# Iterate over the fields and bring the last record created Date where the field wasn't empty
# If the record is not found, store it in the CSV/Excel file as not found
for field in object_fields['fields']:
    print(field['name'])
    try:
        field_detail = pd.DataFrame(
            sf.query("SELECT Id, createddate, SystemModStamp \
                      FROM {} \
                      WHERE createddate > {} \
                        AND {} != null \
                      ORDER BY Id DESC \
                      LIMIT 1".format(object_to_evaluate, last_year , field['name'])
                      )['records'])

        field_detail['Field Name'] = field['name']
        field_detail['Field Label'] = field['label']
        field_detail['Found?'] = 'Yes'

        field_quantity = pd.DataFrame(
            sf.query("SELECT count(Id) \
                    FROM {} \
                    WHERE createddate > {} \
                    AND {} != null".format(object_to_evaluate, last_year , field['name'])
                    ))['records'][0]['expr0']

        field_detail['Quantity'] = field_quantity                        
        data.append(field_detail)

        if field_detail.empty:
            error_data = {'Field Name': [field['name']],
                          'Field Label': [field['label']] , 
                          'Found?': ['Yes, no data']}
            data.append(pd.DataFrame(error_data))
    except:
        error_data = {'Field Name': [field['name']],
                      'Field Label': [field['label']] , 
                      'Found?': ['No']}
        data.append(pd.DataFrame(error_data))

# Concatenate the list of result into one dataframe
data_to_csv = pd.concat(data, ignore_index=True)

# Format the CSV/Excel report
data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True)
data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date
data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date
data_to_csv = data_to_csv.drop('attributes', axis=1)
max_value = data_to_csv['Quantity'].max()
data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value

# Export the data to a CSV/Excel file
data_to_csv.to_csv('last Field Usage Date.csv')
data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")

HOPE IT HELPS!

If you like it, remember to
Buy Me A Coffee

Owner
Sebastian Undurraga
Sebastian Undurraga
Scripts used in the RayStation medical radiation dosimetry treatment planning system

Med Phys Scripts These are scripts that I, the medical physics assistant at Cookeville Regional Medical Center, wrote for use in our radiation therapy

Kaley White 2 Oct 19, 2022
You will need to install a few python packages for this one.

Features Bait support Auto repair will repair every 10 catches Anti detection (still a work in progress) but using random times and click positions Pr

12 Sep 21, 2022
A powerful and user-friendly binary analysis platform!

angr angr is a platform-agnostic binary analysis framework. It is brought to you by the Computer Security Lab at UC Santa Barbara, SEFCOM at Arizona S

6.3k Jan 02, 2023
Safe temperature monitor for baby's room. Made for Raspberry Pi Pico.

Baby Safe Temperature Monitor This project is meant to build a temperature safety monitor for a baby or small child's room. Studies have shown the ris

Jeff Geerling 72 Oct 09, 2022
Telegram bot to remove the forwarded tag from messages.

Anonymous Sender Bot @AnonySendBot Telegram bot to remove the forwarded tag from messages. Table of Contents Usage Deploy To Heroku Local Deploying En

Stark Bots 26 Nov 24, 2022
sumCulator Это калькулятор, который умеет складывать 2 числа.

sumCulator Это калькулятор, который умеет складывать 2 числа. Но есть условия: Эти 2 числа не могут быть отрицательными (всё-таки это вычитание, а не

0 Jul 12, 2022
Replit theme sync; Github theme sync but in Replit.

This is a Replit theme sync, basically meaning that it keeps track of the current time (which may need to be edited later on), and if the time passes morning, afternoon, etc, the theme switches. The

Glitch 8 Jun 25, 2022
The best free and open-source automated time tracker. Cross-platform, extensible, privacy-focused.

Records what you do so that you can know how you've spent your time. All in a secure way where you control the data. Website — Forum — Documentation —

ActivityWatch 7.8k Jan 09, 2023
3D Printed Flip Clock Design and Code

Smart Flip Clock 3D printed smart clock that puts a new twist on old technology. Making The Smart Flip Clock The first thing that must be done for thi

Thomas 105 Oct 17, 2022
github action test, because I dont know it.

mad-y testing testing pip install -r requirements.txt add the DISCORD_TOKEN value to your env vars. and run mad-y how to Deploy ` docker build -t mad-

Mit 1 Oct 29, 2021
freeCodeCamp Scientific Computing with Python Project for Certification.

Time_Calculator_freeCodeCamp freeCodeCamp Scientific Computing with Python Project for Certification. Write a function named add_time that takes in tw

Rajdeep Mondal 1 Dec 23, 2021
This scrypt for auto brightness control

God damn. This scrypt for auto brightness control. The scrypt has voice assistant. You should move this script to auto-upload folder. What do you need

0 Jul 25, 2022
Your one and only Discord Bot that helps you concentrate!

Your one and only Discord Bot thats helps you concentrate! Consider leaving a ⭐ if you found the project helpful. concy-bot A bot which constructively

IEEE VIT Student Chapter 22 Sep 27, 2022
This is an independent project to track Nubank expenses

Nubank expense tracker This is an independent project to track Nubank expenses. To fetch Nubank data we are going to use an unofficial Nubank API, tha

Ramon Gazoni Lacerda 0 Aug 28, 2022
Projeto de Jogo de dados em Python 3 onde é definido o lado a ser apostado e número de jogadas, pontuando os acertos e exibindo se ganhou ou perdeu.

Jogo de DadoX Projeto de script que simula um Jogo de dados em Python 3 onde é definido o lado a ser apostado (1, 2, 3, 4, 5 e 6) ou se vai ser um núm

Estênio Mariano 1 Jul 10, 2021
A simple python project that can find Tangkeke in a given image.

A simple python project that can find Tangkeke in a given image. Make the real Tangkeke image as a kernel to convolute the target image. The area wher

张志衡 1 Dec 08, 2021
Adam with minor modifications which give significant improvement

BAdam Modification of Adam [1] optimizer with increased stability and better performance. Tricks used: Decoupled weight decay as in AdamW [2]. Such de

19 May 11, 2022
Kunai Shitty Raider Leaked LMFAO

Kunai-Raider-Leaked Kunai Shitty Raider Leaked LMFA

5 Nov 24, 2021
This is a program for Carbon Emission calculator.

Summary This is a program for Carbon Emission calculator. Usage This will calculate the carbon emission by each person on various factors. Contributor

Ankit Rane 2 Feb 18, 2022