Interactivity Lab: Household Pulse Explorable

Overview

Interactivity Lab: Household Pulse Explorable

Goal: Build an interactive application that incorporates fundamental Streamlit components to offer a curated yet open-ended look at a dataset.

The Household Pulse Survey is a weekly survey run by the US Census Bureau that measures how the coronavirus pandemic is impacting households across the country from a social and economic perspective. It’s a valuable and extensive source of data to gain insight on individuals and families, and one that we will only begin to touch on in today’s lab.

To help a user explore this data interactively, we will build a Streamlit application that displays the results of one Household Pulse Survey, which ran from from September 29 to October 11, 2021.

Part 0: Setup (before class)

Before coming to class, please download this repository, set up your virtual environment of choice, and install the dependencies using pip install -r requirements.txt. Now start the application by typing streamlit run streamlit_app.py. You should see the template code running in the browser!

Part 1: Warmup and generating plots

All your code for this lab should go in the streamlit_app.py script. In this file, you’ll see helper functions (some of which you will fill in) and a section labeled “MAIN CODE.” Most of your code will go in this latter section, which is at the top level of the script and will run from top to bottom to render your Streamlit application.

  1. Let’s get started by printing some data to the browser. Implement the load_data function, which should read the CSV file pulse39.csv and return it. Then, in the main code, use Streamlit’s builtin dataframe component to print the first 10 rows of df. You should see a scrollable table like this:

Screenshot of the dataframe being visualized in Streamlit

To get an idea of the distribution of demographics in this dataset, let’s create some summary plots using Altair. (The dataset includes several demographic features, which are listed in the Appendix at the bottom of this document. You may wish to visualize more of these features if you have time.)

  1. Create Altair bar charts to visualize the distributions of race and education levels in the data. You may want to refer to the Altair documentation as you build your charts. Remember that to render an Altair chart in Streamlit, you must call st.altair_chart(chart) on the Altair chart object.

    Tip: To get the counts of a categorical variable to visualize, you can use the Altair count aggregation, like so:

    chart = alt.Chart(df)...encode(
        x='count()',
        y='
         
          '
         
    )
  2. Make your charts interactive! This is super easy with Altair. Just add .interactive() to the end of your Altair function call, and you should be able to pan and zoom around your chart. You should also create some tooltips to show the numerical data values. To do this, add the tooltip parameter to your encoding, like so:

    chart = alt.Chart(df)...encode(
        ...,
        tooltip=['
         
          '
         ]
    ).interactive()

Examine the summary charts and see if you can get a sense of the distributions in the dataset. Take a minute to discuss with your group: Who is well-represented in this data, and who isn’t? Why might this be the case?

Part 2: Interactive Slicing Tool

Up until now, we’ve only used basic interactivity from Altair. But what if we want to allow the user to choose which data gets plotted? Let’s now build a Streamlit interface that lets the user select a group of interest based on some demographic variables (which we’ll call a “slice”), and compare distributions of outcome variables for people within the slice against people outside of it.

We'll allow the user to slice the data based on the following four demographic variables (don't worry, the code will be similar for most of these):

  • gender (includes transgender and an option for other gender identities)
  • race
  • education (highest education level completed)
  • age (integers ranging from 19 to 89)

Once they've sliced the data, we will visualize a set of vaccination-related outcome variables for people inside and outside the slice:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

If you're interested, the dataset contains a few other sets of outcomes, which you can browse in the Appendix. But for now, let's start slicing!

  1. Decide what controls are best for the user to manipulate each demographic variable. The controls that are supported in Streamlit are listed here.

  2. Build the controls in the “Custom slicing” section of the page. If you run into trouble, refer to the Streamlit docs or ask the TAs! Tip: Take note of how the values are returned from each Streamlit control. You will need this information for the subsequent steps.

  3. Fill in the get_slice_membership function, which builds a Boolean series indicating whether each data point is part of the slice or not. An example of how to do this using gender as a multiselect has already been filled in for you.

  4. Now, use the values returned from each control to create a slice by calling the get_slice_membership function.

  5. Test that your slicing tool is working by writing a line to the page that prints the count and percentage of the data that is contained in the slice. Manipulate some of the controls and check that the size of each slice matches your expectations.

  6. Create visualizations comparing the three outcome variables within the slice to the variables outside the slice. We recommend using an st.metric component to show the vaccination rate and the vaccine intention fields, and a bar chart to show the distribution of reasons for not getting the vaccine.

    Tip: To display the vaccine hesitancy reasons, the dataframe will require some transformation before passing it to Altair. We’ve provided a utility function to help you do this, which you can use like so:

    # Creates a dataframe with columns 'reason' (string) and 'agree' (boolean)
    vaccine_reasons_inslice = make_long_reason_dataframe(df[slice_labels], 'why_no_vaccine_')
    
    chart = alt.Chart(vaccine_reasons_inslice, title='In Slice').mark_bar().encode(
        x='sum(agree)',
        y='reason:O',
    ).interactive()
    # ...

Here is an example of what your slicing tool could look like (here we are using st.columns to make a 2-column layout):

Screenshot of an example showing a comparison of reasons why people are opting not to get the vaccine

With your group, try slicing the data a few different ways. Discuss whether you find any subgroups that have different outcomes than the rest of the population, and see if you can hypothesize why this might be!

Part 3 (bonus): Interactive Random Sampling

If you have time, you can implement another simple interactive function that users will appreciate. While large data exploration tools are powerful ways to see overall trends, the individual stories of people in the dataset can sometimes get lost. Let’s implement a tool to randomly sample from the dataset and portray information relevant to the topic you investigated above.

  1. In the “Person sampling” section, build a button to retrieve a random person.

  2. When the button is pressed, write code to retrieve a random row from the dataset. You can use the pandas.DataFrame.sample function for this.

  3. Display the information from this datapoint in a human-readable way. For example, one possible English description of a datapoint could look like this:

    This person is a 65-year-old Straight, Married Female of White race (non-hispanic). They have not received the vaccine, and their intention to not get the vaccine is 3.0. Their reasons for not getting the vaccine include: Concerned about possible side effects, Don't know if it will protect me, Don't believe I need it, Don't think COVID-19 is a big threat

As in Part 2, feel free to communicate this information in the way that feels most appropriate to you.

Discuss with your group: What do you notice about individual stories generated this way? What are the strengths and drawbacks of sampling and browsing individual datapoints compared to looking at summary visualizations?

Appendix: Dataset Features

Demographic Variables

  • age and age_group (age_group bins the ages into four categories)
  • gender (includes transgender and an option for other gender identities)
  • sexual_orientation
  • marital_status
  • race and hispanic (the US Census defines ‘Hispanic’ as being independent of self-identified race, which is why it is coded as a separate variable)
  • education (highest education level completed)
  • num_children_hhld (the number of children living in the person’s household)
  • had_covid (boolean)

Outcome Variables

Reasons for vaccine hesitancy

To study vaccination rates, people’s intentions to get or not get the vaccine, and their reasons for this, the following columns are available:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

Economic and food insecurity

The dataset includes columns that may be useful to understand people’s levels of financial and food insecurity:

  • expenses_difficulty (scale from 1 - 4, 1 is least difficulty, 4 is most difficulty paying expenses)
  • housing_difficulty (scale from 1 - 4, same as above for paying next rent or mortgage payment)
  • food_difficulty (scale from 1 - 4, same as above for having enough food)
  • why_not_enough_food_ (four boolean columns indicating whether the person experienced each reason for not having enough food. Note that multiple reasons can be selected)

Mental health

The dataset also includes some columns for understanding people’s recent mental health status:

  • freq_anxiety, freq_worry, freq_little_interest, freq_depressed (scale from 1 - 4 where 1 indicates not at all, 4 indicates nearly every day in the past two weeks)
  • mh_prescription_meds (boolean whether the person has taken prescription medication for mental health)
  • mh_services (boolean whether the person has received mental health services in the past month)
  • mh_notget (boolean whether the person sought mental health services but did not receive them)
A bot to view Dilbert comics directly from Discord and get updates of the comics automatically.

A bot to view Dilbert comics directly from Discord and get updates of the comics automatically

Raghav Sharma 3 Nov 30, 2022
A pypi package details search python module

A pypi package details search python module

Fayas Noushad 5 Nov 30, 2021
Brython (Browser Python) is an implementation of Python 3 running in the browser

brython Brython (Browser Python) is an implementation of Python 3 running in the browser, with an interface to the DOM elements and events. Here is a

5.9k Jan 02, 2023
A Blender addon to enable reloading linked libraries from UI.

library_reload_linked_libraries A Blender addon to enable reloading linked libraries from UI.

3 Nov 27, 2022
A collection of some leetcode challenges in python and JavaScript

Python and Javascript Coding Challenges Some leetcode questions I'm currently working on to open up my mind to better ways of problem solving. Impleme

Ted Ngeene 1 Dec 20, 2021
Reload all Blender add-on modules

Reload-Addon This add-on creates a list of the modules that the add-on selected in the drop-down menu contains and reloads them with the keyboard shor

2 Dec 02, 2021
全局指针统一处理嵌套与非嵌套NER

GlobalPointer 全局指针统一处理嵌套与非嵌套NER。 介绍 博客:https://kexue.fm/archives/8373 效果 人民日报NER 验证集F1 测试集F1 训练速度 预测速度 CRF 96.39% 95.46% 1x 1x GlobalPointer (w/o RoPE

苏剑林(Jianlin Su) 183 Jan 06, 2023
Anki for desktop computers

Anki This repo contains the source code for the computer version of Anki. If you'd like to try development builds of Anki but don't feel comfortable b

Ankitects 12.9k Jan 09, 2023
APC Power Usage is an application which shows power consuption overtime for UPS units manufactured by APC.

APC Power Usage Introduction APC Power Usage is an application which shows power consuption overtime for UPS units manufactured by APC. Screenshoots G

Stefan Kondinski 3 Oct 08, 2021
LINUX-AOS (Automatic Optimization System)

LINUX-AOS (Automatic Optimization System)

1 Jul 12, 2022
Simple but maybe too simple config management through python data classes. We use it for machine learning.

👩‍✈️ Coqpit Simple, light-weight and no dependency config handling through python data classes with to/from JSON serialization/deserialization. Curre

coqui 67 Nov 29, 2022
A synchronous, single-threaded interface for starting processes on Linux

A synchronous, single-threaded interface for starting processes on Linux

Spencer Baugh 27 Jan 28, 2022
Tool that adds githuh profile views to ur acc

Tool that adds githuh profile views to ur acc

Lamp 2 Nov 28, 2021
Medical appointments No-Show classifier

Medical Appointments No-shows Why do 20% of patients miss their scheduled appointments? A person makes a doctor appointment, receives all the instruct

4 Apr 20, 2022
Using graph_nets for pion classification and energy regression. Contributions from LLNL and LBNL

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

3 Nov 23, 2022
Refer'd Resume Scanner

Refer'd Resume Scanner I wanted to share a free resource we built to assist applicants with resume building. Our resume scanner identifies potential s

Refer'd 74 Mar 07, 2022
Architectural Patterns implementation by using notification handler module prototype

This repository covers singleton, indirection, factory, adaptor, mediator patterns in python language by using university hypothetical notification module prototype. The code is just for demonstratin

Muhammad Umair 2 Jan 08, 2022
Análise do Aplicativo Prévias PSDB 2021

Análise do Aplicativo Prévias PSDB 2021 Com a recente polêmica sobre o aplicativo usado nas Prévias do PSDB de 2021, fiquei curioso para saber como er

Paulo Matias 18 Jul 31, 2022
A curated list of awesome things related to Pydantic! 🌪️

Awesome Pydantic A curated list of awesome things related to Pydantic. These packages have not been vetted or approved by the pydantic team. Feel free

Marcelo Trylesinski 186 Jan 05, 2023
decorator

Decorators for Humans The goal of the decorator module is to make it easy to define signature-preserving function decorators and decorator factories.

Michele Simionato 734 Dec 30, 2022