Neural network pruning for finding a sparse computational model for controlling a biological motor task.

Overview

MothPruning

Scientific Overview

Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for modeling complex systems. DNNs are used in a diversity of domains and have helped solve some of the most intractable problems in physics, biology, and computer science. Despite their prevalence, the use of DNNs as a modeling tool comes with some major downsides. DNNs are highly overparameterized, which often results in them being difficult to generalize and interpret, as well as being incredibly computationally expensive. Unlike DNNs, which are often trained until they reach the highest accuracy possible, biological networks have to balance performance with robustness to a noisy and dynamic environment. Biological neural systems use a variety of mechanisms to promote specialized and efficient pathways capable of performing complex tasks in the presence of noise. One such mechanism, synaptic pruning, plays a significant role in refining task-specific behaviors. Synaptic pruning results in a more sparsely connected network that can still perform complex cognitive and motor tasks. Here, we draw inspiration from biology and use DNNs and the method of neural network pruning to find a sparse computational model for controlling a biological motor task.

In this work, we use the inertial dynamics model in [2] to simulate examples of M. sexta hovering flight. These data are used to train a DNN to learn the controllers for hovering. Drawing inspiration from pruning in biological neural systems, we sparsify the network using neural network pruning. Here, we prune weights based simply on their magnitudes, removing those weights closest to zero. Insects must maneuver through high noise environments to accomplish controlled flight. It is often assumed that there is a trade-off between perfect flight control and robustness to noise and that the sensory data may be limited by the signal-to-noise ratio. Thus the network need not train for the most accurate model since in practice noise prevents high-fidelity models from exhibiting their underlying accuracy. Rather, we seek to find the sparsest model capable of performing the task given the noisy environment. We employed two methods for neural network pruning: either through manually setting weights to zero or by utilizing binary masking layers. Furthermore, the DNN is pruned sequentially, meaning groups of weights are removed slowly from the network, with retraining in-between successive prunes, until a target sparsity is reached. Monte Carlo simulations are also used to quantify the statistical distribution of network weights during pruning given random initialization of network weights.

For more information, please see our paper [1].

This is an image!

Project Description

The deep, fully-connected neural network was constructed with ten input variables and seven output variables. The initial and final state space conditions are the inputs to the network: i, i, i, i, i, i, f, f, f, and f. The network predicts the control variables and the final derivatives of the state space in its output layer: x, y, , f, f, f, and f.

After the fully-connected network is trained to a minimum error, we used the method of neural network pruning to promote sparsity between the network layers. In this work, a target sparsity (percentage of pruned network weights) is specified and the smallest magnitude weights are forced to zero. The network is then retrained until a minimum error is reached. This process is repeated until most of the weights have been pruned from the network.

The training and pruning protocols were developed using Keras with the TensorFlow backend. To scale up training for the statistical analysis of many networks, the training and pruning protocols were parallelized using the Jax framework.

To ensure weights remain pruned during retraining, we implemented the pruning functionality of a TensorFlow built toolkit called the Model Optimization Toolkit. The toolkit contains functions for pruning deep neural networks. In the Model Optimization Toolkit, pruning is achieved through the use of binary masking layers that are multiplied element-wise to each weight matrix in the network.

To be able to train and analyze many neural networks, the training and pruning protocols were parallelized in the Jax framework. Jax however does not come with a toolkit for pruning, therefore pruning by way of the binary masking matrices was coded into the training loop.

Installation

Create new conda environment with tools for generating data and training network (Note that this environment requires a GPU and the correct NVIDIA drivers).

conda env create -f environment_ODE_DL.yml

Create kernelspec (so you can see this kernel in JupyterLab).

conda activate [environment name]
python -m ipykernel install --user --name [environment name]
conda deactivate

To install Jax and Flax please follow the instructions on the Jax Github.

Data

To use the TensorFlow version of this code, you need to gerenate simulations of moth hovering for the data. The Jax version (multi-network train and prune) has data provided in this repository.

cd MothMachineLearning/Underactuated/GenerateData

and use 010_OneTorqueParallelSims.ipynb to generate the simulations.

How to use

The following guide walks through the process of training and pruning many networks in parallel using the Jax framework. However, the TensorFlow code is also provided for experimentation and visualization.

Step 1: Train networks

cd MothMachineLearning/Underactuated/TrainNetwork/multiNetPrune/

First we train and prune the desired number of networks in parallel using the Jax framework. Choose the number of networks you wish to train/prune in parallel by adjusting the numParallel parameter. You can also define the number of layers, units, and other hyperparameters. Use the command

python3 step1_train.py

to train and prune the networks in parallel.

Step 2: Evaluate at prunes

Next, the networks need to be evaulated at each prune. Use the command

python3 step2_pruneEval.py

to evaluate the networks at each prune.

Step 3: Pre-process networks

This code prepares the networks for sparse network identification (explained in the next step). It essentially just reorganizes the data. Open and run step3_preprocess.ipynb to preprocess, making sure to change modeltimestamp and the file names to the correct ones for your run.

Step 4: Find sparse networks

This codes finds the optimally sparse networks. For each network, the most pruned version whose loss is below a specified threshold (here 0.001) is kept. For example, the image below is a single network that has gone through the sequential pruning process and the red line specifies the defined threshold. For this example, the optimally sparse network is the one pruned by 94% (i.e. 6% of the original weights remain).

This is an image!

The sparse networks are collected and saved to a file called sparseNetworks.pkl. Open and run step4_findSparse.ipynb, making sure to change modeltimestamp and the file names to the correct ones for your run.

Note that if a network does not have a single prune that is below the loss threshold, it will be skipped and not included in the list of sparseNetworks. For example, if you trained and pruned 10 networks and 3 did not have a prune below a loss of 0.001, the list sparseNetworks will be length 7.

References

[1] Zahn, O., Bustamante, Jr J., Switzer, C., Daniel, T., and Kutz, J. N. (2022). Pruning deep neural networks generates a sparse, bio-inspired nonlinear controller for insect flight.

[2] Bustamante, Jr J., Ahmed, M., Deora, T., Fabien, B., and Daniel, T. (2021). Abdominal movements in insect flight reshape the role of non-aerodynamic structures for flight maneuverability. J. Integrative and Comparative Biology. In revision.

Owner
Olivia Thomas
Physics graduate student at the University of Washington
Olivia Thomas
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023