Code accompanying our NeurIPS 2021 traffic4cast challenge

Overview

Traffic forecasting on traffic movie snippets

This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the challenge, traffic data is provided in movie format, i.e. a rasterised map with volume and average speed values evolving over time. The code is based on (and forked from) the code provided by the competition organizers, which can be found here. For further information on the data and the challenge we also refer to the competition Website or GitHub.

Installation and setup

To install the repository and all required packages, run

git clone https://github.com/NinaWie/NeurIPS2021-traffic4cast.git
cd NeurIPS2021-traffic4cast

conda env update -f environment.yaml
conda activate t4c

export PYTHONPATH="$PYTHONPATH:$PWD"

Instructions on installation with GPU support can be found in the yaml file.

To reproduce the results and train or test on the original data, download the data and extract it to the subfolder data/raw.

Test model

Download the weights of our best model here and put it in a new folder named trained_model in the main directory. The path to the checkpoint should now be NeurIPS2021-traffic4cast/trained_models/ckpt_upp_patch_d100.pt.

To create a submission on the test data, run

DEVICE=cpu
DATA_RAW_PATH="data/raw"
STRIDE=10

python baselines/baselines_cli.py --model_str=up_patch --resume_checkpoint='trained_models/ckpt_upp_patch_d100.pt' --radius=50 --stride=$STRIDE --epochs=0 --batch_size=1 --num_workers=0 --data_raw_path=$DATA_RAW_PATH --device=$DEVICE --submit

Notes:

  • For our best submission (score 59.93) a stride of 10 is used. This means that patches are extracted from the test data in a very densely overlapping manner. However, much more patches per sample have to be predicted and the runtime thus increases significantly. We thus recommend to use a stride of 50 for testing (score 60.13 on leaderboard).
  • In our paper, we define d as the side length of each patch. In this codebase we set a radius instead. The best performing model was trained with radius 50 corresponding to d=100.
  • The --submit-flag was added to the arguments to be called whenever a submission should be created.

Train

To train a model from scratch with our approach, run

DEVICE=cpu
DATA_RAW_PATH="data/raw"

python baselines/baselines_cli.py --model_str=up_patch --radius=50 --epochs=1000 --limit=100 --val_limit=10 --batch_size=8 --checkpoint_name='_upp_50_retrained' --num_workers=0 --data_raw_path=$DATA_RAW_PATH --device=$DEVICE

Notes:

  • The model will be saved in a folder called ckpt_upp_50_retrained, as specified with the checkpoint_name argument. The checkpoints will be saved every 50 epochs and whenever a better validation score is achieved (best.pt). Later, training can be resumed (or the model can be tested) by setting --resume_checkpoint='ckpt_upp_50_retrained/best.pt'.
  • No submission will be created after the run. Add the flag --submit in order to create a submission
  • The stride argument is not necessary for training, since it is only relevant for test data. The validation MSE is computed on the patches, not a full city.
  • In order to use our dataset, the number of workers must be set to 0. Otherwise, the random seed will be set such that the same files are loaded for every epoch. This is due to the setup of the PatchT4CDataset, where files are randomly loaded every epoch and then kept in memory.

Reproduce experiments

In our short paper, further experiments comparing model architectures and different strides are shown. To reproduce the experiment on stride values, execute the following steps:

  • Run python baselines/naive_shifted_stats.py to create artifical test data from the city Antwerp
  • Adapt the paths in the script
  • Run python test_script.py
  • Analyse the output csv file results_test_script.csv

For the other experiments, we regularly write training and validation losses to a file results.json during training (file is stored in the same folder as the checkpoints).

Other approaches

  • In naive_shifted_stats we have implemented a naive approach to the temporal challenge, namely using averages of the previous year and adapting the values to 2020 with a simple factor dependent on the shift of the input hour. The statistics however first have to be computed for each city.
  • In the configs file further options were added, for example u_patch which is the normal U-Net with patching, and models from the segmentation_models_pytorch (smp) PyPI package. For the latter, smp must be installed with pip install segmentation_models_pytorch.
Owner
Nina Wiedemann
Nina Wiedemann
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Ï€-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Ï€-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022