Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Overview

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

This is an implementation of the paper, along with the pipeline and pretrained model using an open dataset. Audio samples of the paper is available here.

Recipe

This open pipeline uses the Databaker dataset. Please refer to our previous pipeline for dataset preprocessing, while only the Databaker dataset is used. Besides, you need to run lexicon/build_databaker.py to build the vocabulary, download the lexicon from zdic.net, and encode them with XLM-R. Feel free to change the target directory to save the data, which is specified in build_databaker.py and lexicon_utils.py.

Below are the commands to train and evaluate. Default target directories specified in the preprocessing scripts are used, so please substitute them with your own. The evaluation script can be run simultaneously with the training script. You may also use the evaluation script to synthesize samples from pretrained models. Please refer to the help of the arguments for their meanings.

python -m torch.distributed.launch --nproc_per_node=NGPU --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=D:\free_corpus\packed\ --training_languages=zh-cn --eval_languages=zh-cn --training_speakers=databaker --eval_steps=100000:150000 --hparams="input_method=char,multi_speaker=True,use_knowledge_attention=True,remove_space=True,data_format=nlti" --external_embed=D:\free_corpus\packed\embed.zip --vocab=D:\free_corpus\packed\db_vocab.json

python eval.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=D:\free_corpus\packed\ --eval_languages=zh-cn --eval_meta=D:\free_corpus\packed\metadata.eval.txt --hparams="input_method=char,multi_speaker=True,use_knowledge_attention=True,remove_space=True,data_format=nlti" --start_step=100000 --vocab=D:\free_corpus\packed\db_vocab.json --external_embed=D:\free_corpus\packed\embed.zip --eval_speakers=databaker

Besides, to report CER, you need to create azure_key.json with your own Azure STT subscription, with content of {"subscription": "YOUR_KEY", "region": "YOUR_REGION"}, see utils/transcribe.py. Due to significant differences of the datasets used, the implementation is for demonstration only and could not fully reproduce the results in the paper.

Pretrained Model

The pretrained models on Databaker are available at OneDrive Link, which reaches a CER of 4.19%. Relevant files necessary for generation of speeches including lexicon texts, lexicon embeddings, the vocabulary file, and evaluation scripts are also included to aid fast reproduction.

Owner
Mutian He
Mutian He
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022