Interactive dimensionality reduction for large datasets

Related tags

Deep Learningblossom
Overview

BlosSOM 🌼

BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimensional datasets, and produce great-looking 2-dimensional visualizations.

WARNING: BlosSOM is still under development, some stuff may not work right, but things will magically improve without notice. Feel free to open an issue if something looks wrong.

screenshot

BlosSOM was developed at the MFF UK Prague, in cooperation with IOCB Prague.

MFF logo  IOCB logo 

Overview

BlosSOM creates a landmark-based model of the dataset, and dynamically projects all dataset point to your screen (using EmbedSOM). Several other algorithms and tools are provided to manage the landmarks; a quick overview follows:

  • High-dimensional landmark positioning:
    • Self-organizing maps
    • k-Means
  • 2D landmark positioning
    • k-NN graph generation (only adds edges, not vertices)
    • force-based graph layouting
    • dynamic t-SNE
  • Dimensionality reduction
    • EmbedSOM
    • CUDA EmbedSOM (with roughly 500x speedup, enabling smooth display of a few millions of points)
  • Manual landmark position optimization
  • Visualization settings (colors, transparencies, cluster coloring, ...)
  • Dataset transformations and dimension scaling
  • Import from matrix-like data files
    • FCS3.0 (Flow Cytometry Standard files)
    • TSV (Tab-separated CSV)
  • Export of the data for plotting

Compiling and running BlosSOM

You will need cmake build system and SDL2.

For CUDA EmbedSOM to work, you need the NVIDIA CUDA toolkit. Append -DBUILD_CUDA=1 to cmake options to enable the CUDA version.

Windows (Visual Studio 2019)

Dependencies

The project requires SDL2 as an external dependency:

  1. install vcpkg tool and remember your vcpkg directory
  2. install SDL: vcpkg install SDL2:x64-windows

Compilation

git submodule init
git submodule update

mkdir build
cd build

# You need to fix the path to vcpkg in the following command:
cmake .. -G "Visual Studio 16 2019" -A x64 -DCMAKE_BUILD_TYPE="Release" -DCMAKE_INSTALL_PREFIX=./inst -DCMAKE_TOOLCHAIN_FILE=your-vcpkg-clone-directory/scripts/buildsystems/vcpkg.cmake

cmake --build . --config Release
cmake --install . --config Release

Running

Open Visual Studio solution BlosSOM.sln, set blossom as startup project, set configuration to Release and run the project.

Linux (and possibly other unix-like systems)

Dependencies

The project requires SDL2 as an external dependency. Install libsdl2-dev (on Debian-based systems) or SDL2-devel (on Red Hat-based systems), or similar (depending on the Linux distribution). You should be able to install cmake package the same way.

Compilation

git submodule init
git submodule update

mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=./inst    # or any other directory
make install                              # use -j option to speed up the build

Running

./inst/bin/blossom

Documentation

Quickstart

  1. Click on the "plus" button on the bottom right side of the window
  2. Choose Open file (the first button from the top) and open a file from the demo_data/ directory
  3. You can now add and delete landmarks using ctrl+mouse click, and drag them around.
  4. Use the tools and settings available under the "plus" button to optimize the landmark positions and get a better visualization.

See the HOWTO for more details and hints.

Performance and CUDA

If you pass -DBUILD_CUDA=1 to the cmake commands, you will get extra executable called blossom_cuda (or blossom_cuda.exe, on Windows).

The 2 versions of BlosSOM executable differ mainly in the performance of EmbedSOM projection, which is more than 100Γ— faster on GPUs than on CPUs. If the dataset gets large, only a fixed-size slice of the dataset gets processed each frame (e.g., at most 1000 points in case of CPU) to keep the framerate in a usable range. The defaults in BlosSOM should work smoothly for many use-cases (defaulting at 1k points per frame on CPU and 50k points per frame on GPU).

If required (e.g., if you have a really fast GPU), you may modify the constants in the corresponding source files, around the call sites of clean_range(), which is the function that manages the round-robin refreshing of the data. Functionality that dynamically chooses the best data-crunching rate is being implemented and should be available soon.

License

BlosSOM is licensed under GPLv3 or later. Several small libraries bundled in the repository are licensed with MIT-style licenses.

Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360Β° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360Β° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTXβ„’ 3090

THUDM 28 Dec 09, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Python Algorithm Interview Book Review

파이썬 μ•Œκ³ λ¦¬μ¦˜ 인터뷰 μ±… 리뷰 리뷰 IT λŒ€κΈ°μ—…μ— λ“€μ–΄κ°€κ³  싢은 λͺ©ν‘œκ°€ μžˆλ‹€. λ‚΄κ°€ κΏˆκΏ”μ˜¨ νšŒμ‚¬μ—μ„œ μΌν•˜λŠ” μ‚¬λžŒλ“€μ˜ λͺ¨μŠ΅μ„ 보면 λ©‹μžˆλ‹€κ³  생각이 λ“€κ³  λ‚˜μ˜ λͺ©ν‘œμ— λŒ€ν•œ 열망이 κ°•ν•΄μ§€λŠ” 것 κ°™λ‹€. 미래의 핡심 사업 쀑 ν•˜λ‚˜μΈ SW 뢀뢄을 이끌고 λ°œμ „μ‹œν‚€λŠ” μš°λ¦¬λ‚˜λΌμ˜ I

SharkBSJ 1 Dec 14, 2021
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022