Transformer model implemented with Pytorch

Overview

transformer-pytorch

Transformer model implemented with Pytorch

Attention is all you need-[Paper]

Architecture

Transformer


Self-Attention

Attention

self_attention.py

[N, len, heads, head_dim] values = values.reshape(N, value_len, self.heads, self.head_dim) keys = keys.reshape(N, key_len, self.heads, self.head_dim) queries = queries.reshape(N, query_len, self.heads, self.head_dim) # Einsum does matrix mult. for query*keys for each training example # with every other training example, don't be confused by einsum # it's just how I like doing matrix multiplication & bmm energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) # queries shape: (N, query_len, heads, heads_dim), # keys shape: (N, key_len, heads, heads_dim) # energy: (N, heads, query_len, key_len) # Mask padded indices so their weights become 0 if mask is not None: energy = energy.masked_fill(mask == 0, float("-1e20")) # Normalize energy values similarly to seq2seq + attention # so that they sum to 1. Also divide by scaling factor for # better stability attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3) # attention shape: (N, heads, query_len, key_len) out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape( N, query_len, self.heads * self.head_dim ) # attention shape: (N, heads, query_len, key_len) # values shape: (N, value_len, heads, heads_dim) # out after matrix multiply: (N, query_len, heads, head_dim), then # we reshape and flatten the last two dimensions. out = self.fc_out(out) # Linear layer doesn't modify the shape, final shape will be # (N, query_len, embed_size) return out ">
 class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads      = heads
        self.head_dim   = embed_size // heads

        assert (
                self.head_dim * heads == embed_size
        ), "Embedding size needs to be divisible by heads"

        self.values  = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.keys    = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.queries = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.fc_out  = nn.Linear(heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        # Get number of training examples
        N = query.shape[0]

        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        values  = self.values(values)
        keys    = self.keys(keys)
        queries = self.queries(query)
        
        # Split the embedding into self.heads different pieces
        # Multi head
        # [N, len, embed_size] --> [N, len, heads, head_dim]
        values    = values.reshape(N, value_len, self.heads, self.head_dim)
        keys      = keys.reshape(N, key_len, self.heads, self.head_dim)
        queries   = queries.reshape(N, query_len, self.heads, self.head_dim)

        # Einsum does matrix mult. for query*keys for each training example
        # with every other training example, don't be confused by einsum
        # it's just how I like doing matrix multiplication & bmm
        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
        # queries shape: (N, query_len, heads, heads_dim),
        # keys shape: (N, key_len, heads, heads_dim)
        # energy: (N, heads, query_len, key_len)

        # Mask padded indices so their weights become 0
        if mask is not None:
            energy = energy.masked_fill(mask == 0, float("-1e20"))

        # Normalize energy values similarly to seq2seq + attention
        # so that they sum to 1. Also divide by scaling factor for
        # better stability
        attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)
        # attention shape: (N, heads, query_len, key_len)

        out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
            N, query_len, self.heads * self.head_dim
        )
        # attention shape: (N, heads, query_len, key_len)
        # values shape: (N, value_len, heads, heads_dim)
        # out after matrix multiply: (N, query_len, heads, head_dim), then
        # we reshape and flatten the last two dimensions.

        out = self.fc_out(out)
        # Linear layer doesn't modify the shape, final shape will be
        # (N, query_len, embed_size)

        return out

Encoder Block

Encoder

encoder_block.py

class EncoderBlock(nn.Module):
    def __init__(self, embed_size, heads, dropout, forward_expansion):
        super(EncoderBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm1     = nn.LayerNorm(embed_size)
        self.norm2     = nn.LayerNorm(embed_size)

        self.feed_forward = nn.Sequential(
            nn.Linear(embed_size, forward_expansion * embed_size),
            nn.ReLU(),
            nn.Linear(forward_expansion * embed_size, embed_size),
        )

        self.dropout = nn.Dropout(dropout)

    def forward(self, value, key, query, mask):
        attention = self.attention(value, key, query, mask)

        # Add skip connection, run through normalization and finally dropout
        x       = self.dropout(self.norm1(attention + query))
        forward = self.feed_forward(x)
        out     = self.dropout(self.norm2(forward + x))
        return out

Encoder

Encoder

encoder.py

class Encoder(nn.Module):
    def __init__(
            self,
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length,
    ):

        super(Encoder, self).__init__()
        self.embed_size         = embed_size
        self.device             = device
        self.word_embedding     = nn.Embedding(src_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                EncoderBlock(
                    embed_size,
                    heads,
                    dropout=dropout,
                    forward_expansion=forward_expansion,
                )
                for _ in range(num_layers)
            ]
        )

        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask):
        N, seq_length = x.shape
        positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        out = self.dropout(
            (self.word_embedding(x) + self.position_embedding(positions))
        )

        # In the Encoder the query, key, value are all the same, it's in the
        # decoder this will change. This might look a bit odd in this case.
        for layer in self.layers:
            out = layer(out, out, out, mask)

        return out

Decoder Block

DecoderBlock

docoder_block.py

class DecoderBlock(nn.Module):
    def __init__(self, embed_size, heads, forward_expansion, dropout, device):
        super(DecoderBlock, self).__init__()
        self.norm              = nn.LayerNorm(embed_size)
        self.attention         = SelfAttention(embed_size, heads=heads)
        self.transformer_block = EncoderBlock(
            embed_size, heads, dropout, forward_expansion
        )
        self.dropout           = nn.Dropout(dropout)

    def forward(self, x, value, key, src_mask, trg_mask):
        attention = self.attention(x, x, x, trg_mask)
        query     = self.dropout(self.norm(attention + x))
        out       = self.transformer_block(value, key, query, src_mask)
        return out

Decoder

Decoder

decoder.py

class Decoder(nn.Module):
    def __init__(
            self,
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length,
    ):
        super(Decoder, self).__init__()
        self.device             = device
        self.word_embedding     = nn.Embedding(trg_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
                for _ in range(num_layers)
            ]
        )
        
        self.dropout = nn.Dropout(dropout)
        self.fc_out  = nn.Linear(embed_size, trg_vocab_size)


    def forward(self, x, enc_out, src_mask, trg_mask):
        N, seq_length = x.shape
        positions     = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        x             = self.dropout(
            (self.word_embedding(x) + self.position_embedding(positions))
        )

        for layer in self.layers:
            x = layer(x, enc_out, enc_out, src_mask, trg_mask)

        out = self.fc_out(x)
        return out

Transformer

transformer.py

class Transformer(nn.Module):
    def __init__(
            self,
            src_vocab_size,
            trg_vocab_size,
            src_pad_idx,
            trg_pad_idx,
            embed_size=512,
            num_layers=6,
            forward_expansion=4,
            heads=8,
            dropout=0,
            device="cpu",
            max_length=100,
    ):

        super(Transformer, self).__init__()

        self.encoder = Encoder(
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length,
        )

        self.decoder = Decoder(
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length,
        )

        self.src_pad_idx = src_pad_idx
        self.trg_pad_idx = trg_pad_idx
        self.device      = device

    def make_src_mask(self, src):
        src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
        # (N, 1, 1, src_len)
        return src_mask.to(self.device)

    def make_trg_mask(self, trg):
        N, trg_len = trg.shape
        trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
            N, 1, trg_len, trg_len
        )

        return trg_mask.to(self.device)

    def forward(self, src, trg):
        src_mask = self.make_src_mask(src)
        trg_mask = self.make_trg_mask(trg)
        enc_src = self.encoder(src, src_mask)
        out = self.decoder(trg, enc_src, src_mask, trg_mask)
        return out

Authors

Owner
Mingu Kang
SW Engineering / ML / DL / Blockchain Dept. of Software Engineering, Jeonbuk National University
Mingu Kang
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
190 Jan 03, 2023
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023