A port of muP to JAX/Haiku

Overview

MUP for Haiku

This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to suggestions on improving the usability.

Installation

pip install haiku-mup

Learning rate demo

These plots show the evolution of the optimal learning rate for a 3-hidden-layer MLP on MNIST, trained for 10 epochs (5 trials per lr/width combination).

With standard parameterization, the learning rate optimum (w.r.t. training loss) continues changing as the width increases, but μP keeps it approximately fixed:

Here's the same kind of plot for 3 layer transformers on the Penn Treebank, this time showing Validation loss instead of training loss, scaling both the number of heads and the embedding dimension simultaneously:

Note that the optima have the same value for n_embd=80. That's because the other hyperparameters were tuned using an SP model with that width, so this shouldn't be biased in favor of μP.

Usage

from functools import partial

import jax
import jax.numpy as jnp
import haiku as hk
from optax import adam, chain

from haiku_mup import apply_mup, Mup, Readout

class MyModel(hk.Module):
    def __init__(self, width, n_classes=10):
        super().__init__(name='model')
        self.width = width
        self.n_classes = n_classes

    def __call__(self, x):
        x = hk.Linear(self.width)(x)
        x = jax.nn.relu(x)
        return Readout(2)(x) # 1. Replace output layer with Readout layer

def fn(x, width=100):
    with apply_mup(): # 2. Modify parameter creation with apply_mup()
        return MyModel(width)(x)

mup = Mup()

init_input = jnp.zeros(123)
base_model = hk.transform(partial(fn, width=1))

with mup.init_base(): # 3. Use this context manager when initializing the base model
    hk.init(fn, jax.random.PRNGKey(0), init_input) 

model = hk.transform(fn)

with mup.init_target(): # 4. Use this context manager when initializng the target model
    params = model.init(jax.random.PRNGKey(0), init_input)

model = mup.wrap_model(model) # 5. Modify your model with Mup

optimizer = optax.adam(3e-4)
optimizer = mup.wrap_optimizer(optimizer, adam=True) # 6. Use wrap_optimizer to get layer specific learning rates

# Now the model can be trained as normal

Summary

  1. Replace output layers with Readout layers
  2. Modify parameter creation with the apply_mup() context manager
  3. Initialize a base model inside a Mup.init_base() context
  4. Initialize the target model inside a Mup.init_target() context
  5. Wrap the model with Mup.wrap_model
  6. Wrap optimizer with Mup.wrap_optimizer

Shared Input/Output embeddings

If you want to use the input embedding matrix as the output layer's weight matrix make the following two replacements:

# old: embedding_layer = hk.Embed(*args, **kwargs)
# new:
embedding_layer = haiku_mup.SharedEmbed(*args, **kwargs)
input_embeds = embedding_layer(x)

#old: output = hk.Linear(n_classes)(x)
# new:
output = haiku_mup.SharedReadout()(embedding_layer.get_weights(), x) 
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022