This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Overview

Cross-Descriptor Visual Localization and Mapping

This repository contains the implementation of the following paper:

"Cross-Descriptor Visual Localization and Mapping".
M. Dusmanu, O. Miksik, J.L. Schönberger, and M. Pollefeys. ICCV 2021.

[Paper on arXiv]

Requirements

COLMAP

We use COLMAP for DoG keypoint extraction as well as localization and mapping. Please follow the installation instructions available on the official webpage. Before proceeding, we recommend setting an environmental variable to the COLMAP executable folder by running export COLMAP_PATH=path_to_colmap_executable_folder.

Python

The environment can be set up directly using conda:

conda env create -f env.yml
conda activate cross-descriptor-vis-loc-map

Training data

We provide a script for downloading the raw training data:

bash scripts/download_training_data.sh

Evaluation data

We provide a script for downloading the LFE dataset along with the GT used for evaluation as well as the Aachen Day-Night dataset:

bash scripts/download_evaluation_data.sh

Training

Data preprocessing

First step is extracting keypoints and descriptors on the training data downloaded above.

bash scripts/process_training_data.sh

Alternatively, you can directly download the processed training data by running:

bash scripts/download_processed_training_data.sh

Training

To run training with the default architecture and hyper-parameters, execute the following:

python train.py \
    --dataset_path data/train/colmap \
    --features brief sift-kornia hardnet sosnet

Pretrained models

We provide two pretrained models trained on descriptors extracted from COLMAP SIFT and OpenCV SIFT keypoints, respectively. These models can be downloaded by running:

bash scripts/download_checkpoints.sh

Evaluation

Demo Notebook

Click for details...

Local Feature Evaluation Benchmark

Click for details...

First step is extracting descriptors on all datasets:

bash scripts/process_LFE_data.sh

We provide examples below for running reconstruction on Madrid Metrpolis in each different evaluation scenario.

Reconstruction using a single descriptor (standard)

python local-feature-evaluation/reconstruction_pipeline_progressive.py \
    --dataset_path data/eval/LFE-release/Madrid_Metropolis \
    --colmap_path $COLMAP_PATH \
    --features sift-kornia \
    --exp_name sift-kornia-single

Reconstruction using the progressive approach (ours)

python local-feature-evaluation/reconstruction_pipeline_progressive.py \
    --dataset_path data/eval/LFE-release/Madrid_Metropolis \
    --colmap_path $COLMAP_PATH \
    --features brief sift-kornia hardnet sosnet \
    --exp_name progressive

Reconstruction using the joint embedding approach (ours)

python local-feature-evaluation/reconstruction_pipeline_embed.py \
    --dataset_path data/eval/LFE-release/Madrid_Metropolis \
    --colmap_path $COLMAP_PATH \
    --features brief sift-kornia hardnet sosnet \
    --exp_name embed

Reconstruction using a single descriptor on the associated split (real-world)

python local-feature-evaluation/reconstruction_pipeline_subset.py \
    --dataset_path data/eval/LFE-release/Madrid_Metropolis/ \
    --colmap_path $COLMAP_PATH \
    --features brief sift-kornia hardnet sosnet \
    --feature sift-kornia \
    --exp_name sift-kornia-subset

Evaluation of a reconstruction w.r.t. metric pseudo-ground-truth

python local-feature-evaluation/align_and_compare.py \
    --colmap_path $COLMAP_PATH \
    --reference_model_path data/eval/LFE-release/Madrid_Metropolis/sparse-reference/filtered-metric/ \
    --model_path data/eval/LFE-release/Madrid_Metropolis/sparse-sift-kornia-single/0/

Aachen Day-Night

Click for details...

BibTeX

If you use this code in your project, please cite the following paper:

@InProceedings{Dusmanu2021Cross,
    author = {Dusmanu, Mihai and Miksik, Ondrej and Sch\"onberger, Johannes L. and Pollefeys, Marc},
    title = {{Cross Descriptor Visual Localization and Mapping}},
    booktitle = {Proceedings of the International Conference on Computer Vision},
    year = {2021}
}
Owner
Mihai Dusmanu
PhD Student at ETH Zurich. Computer Vision + Deep Learning. Feature detection / description / matching, 3D reconstruction.
Mihai Dusmanu
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022