image scene graph generation benchmark

Overview

Scene Graph Benchmark in PyTorch 1.7

This project is based on maskrcnn-benchmark

alt text

Highlights

  • Upgrad to pytorch 1.7
  • Multi-GPU training and inference
  • Batched inference: can perform inference using multiple images per batch per GPU.
  • Fast and flexible tsv dataset format
  • Remove FasterRCNN detector dependency: during relation head training, can plugin bounding boxes from any detector.
  • Provides pre-trained models for different scene graph detection algorithms (IMP, MSDN, GRCNN, Neural Motif, RelDN).
  • Provides bounding box level and relation level feature extraction functionalities
  • Provides large detector backbones (ResNxt152)

Installation

Check INSTALL.md for installation instructions.

Model Zoo and Baselines

Pre-trained models can be found in SCENE_GRAPH_MODEL_ZOO.md

Visualization and Demo

We provide a helper class to simplify writing inference pipelines using pre-trained models (Currently only support objects and attributes). Here is how we would do it. Run the following commands:

# visualize VinVL object detection
# pretrained models at https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/vinvl_model_zoo/vinvl_vg_x152c4.pth
# the associated labelmap at https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/vinvl_model_zoo/VG-SGG-dicts-vgoi6-clipped.json
python tools/demo/demo_image.py --config_file sgg_configs/vgattr/vinvl_x152c4.yaml --img_file demo/woman_fish.jpg --save_file output/woman_fish_x152c4.obj.jpg MODEL.WEIGHT pretrained_model/vinvl_vg_x152c4.pth MODEL.ROI_HEADS.NMS_FILTER 1 MODEL.ROI_HEADS.SCORE_THRESH 0.2 TEST.IGNORE_BOX_REGRESSION False

# visualize VinVL object-attribute detection
# pretrained models at https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/vinvl_model_zoo/vinvl_vg_x152c4.pth
# the associated labelmap at https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/vinvl_model_zoo/VG-SGG-dicts-vgoi6-clipped.json
python tools/demo/demo_image.py --config_file sgg_configs/vgattr/vinvl_x152c4.yaml --img_file demo/woman_fish.jpg --save_file output/woman_fish_x152c4.attr.jpg --visualize_attr MODEL.WEIGHT pretrained_model/vinvl_vg_x152c4.pth MODEL.ROI_HEADS.NMS_FILTER 1 MODEL.ROI_HEADS.SCORE_THRESH 0.2 TEST.IGNORE_BOX_REGRESSION False

# visualize OpenImage scene graph generation by RelDN
# pretrained models at https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/sgg_model_zoo/sgg_oi_vrd_model_zoo/RX152FPN_reldn_oi_best.pth
python tools/demo/demo_image.py --config_file sgg_configs/vrd/R152FPN_vrd_reldn.yaml --img_file demo/1024px-Gen_Robert_E_Lee_on_Traveler_at_Gettysburg_Pa.jpg --save_file output/1024px-Gen_Robert_E_Lee_on_Traveler_at_Gettysburg_Pa.reldn_relation.jpg --visualize_relation MODEL.ROI_RELATION_HEAD.DETECTOR_PRE_CALCULATED False

# visualize Visual Genome scene graph generation by neural motif
python tools/demo/demo_image.py --config_file sgg_configs/vg_vrd/rel_danfeiX_FPN50_nm.yaml --img_file demo/1024px-Gen_Robert_E_Lee_on_Traveler_at_Gettysburg_Pa.jpg --save_file demo/1024px-Gen_Robert_E_Lee_on_Traveler_at_Gettysburg_Pa_vgnm.jpg --visualize_relation MODEL.ROI_RELATION_HEAD.DETECTOR_PRE_CALCULATED False DATASETS.LABELMAP_FILE "visualgenome/VG-SGG-dicts-danfeiX-clipped.json" DATA_DIR /home/penzhan/GitHub/maskrcnn-benchmark-1/datasets1 MODEL.ROI_RELATION_HEAD.USE_BIAS True MODEL.ROI_RELATION_HEAD.FILTER_NON_OVERLAP True MODEL.ROI_HEADS.DETECTIONS_PER_IMG 64 MODEL.ROI_RELATION_HEAD.SHARE_BOX_FEATURE_EXTRACTOR False MODEL.ROI_RELATION_HEAD.NEURAL_MOTIF.OBJ_LSTM_NUM_LAYERS 0 MODEL.ROI_RELATION_HEAD.NEURAL_MOTIF.EDGE_LSTM_NUM_LAYERS 2 TEST.IMS_PER_BATCH 2

Perform training

For the following examples to work, you need to first install this repo.

You will also need to download the dataset. Datasets can be downloaded by azcopy with following command:

path/to/azcopy copy 'https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/datasets/TASK_NAME' <target folder> --recursive

TASK_NAME could be visualgenome, openimages_v5c.

We recommend to symlink the path to the dataset to datasets/ as follows

# symlink the dataset
cd ~/github/maskrcnn-benchmark
mkdir -p datasets/openimages_v5c/
ln -s /vrd datasets/openimages_v5c/vrd

You can also prepare your own datasets.

Follow tsv dataset creation instructions tools/mini_tsv/README.md

Single GPU training

python tools/train_sg_net.py --config-file "/path/to/config/file.yaml"

This should work out of the box and is very similar to what we should do for multi-GPU training. But the drawback is that it will use much more GPU memory. The reason is that we set in the configuration files a global batch size that is divided over the number of GPUs. So if we only have a single GPU, this means that the batch size for that GPU will be 4x larger, which might lead to out-of-memory errors.

Multi-GPU training

We use internally torch.distributed.launch in order to launch multi-gpu training. This utility function from PyTorch spawns as many Python processes as the number of GPUs we want to use, and each Python process will only use a single GPU.

export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_sg_net.py --config-file "path/to/config/file.yaml" 

Evaluation

You can test your model directly on single or multiple gpus. To evaluate relations, one needs to output "relation_scores_all" in the TSV_SAVE_SUBSET. Here are a few example command line for evaluating on 4 GPUS:

export NGPUS=4

python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file CONFIG_FILE_PATH 

# vg IMP evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/vg_vrd/rel_danfeiX_FPN50_imp.yaml

# vg MSDN evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/vg_vrd/rel_danfeiX_FPN50_msdn.yaml

# vg neural motif evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/vg_vrd/rel_danfeiX_FPN50_nm.yaml

# vg GRCNN evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/vg_vrd/rel_danfeiX_FPN50_grcnn.yaml

# vg RelDN evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/vg_vrd/rel_danfeiX_FPN50_reldn.yaml

# oi IMP evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/oi_vrd/R152FPN_imp_bias_oi.yaml

# oi MSDN evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/oi_vrd/R152FPN_msdn_bias_oi.yaml

# oi neural motif evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/oi_vrd/R152FPN_motif_oi.yaml

# oi GRCNN evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/oi_vrd/R152FPN_grcnn_oi.yaml

# oi RelDN evaluation
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file sgg_configs/vrd/R152FPN_vrd_reldn.yaml

To evaluate in sgcls mode:

export NGPUS=4

python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file CONFIG_FILE_PATH MODEL.ROI_BOX_HEAD.FORCE_BOXES True MODEL.ROI_RELATION_HEAD.MODE "sgcls"

To evaluate in predcls mode:

export NGPUS=4

python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file CONFIG_FILE_PATH MODEL.ROI_RELATION_HEAD.MODE "predcls"

To evaluate with ground truth bbox and ground truth pairs:

export NGPUS=4

python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_sg_net.py --config-file CONFIG_FILE_PATH MODEL.ROI_RELATION_HEAD.FORCE_RELATIONS True

Abstractions

For more information on some of the main abstractions in our implementation, see ABSTRACTIONS.md.

Adding your own dataset

This implementation adds support for TSV style datasets. But adding support for training on a new dataset can be done as follows:

from maskrcnn_benchmark.data.datasets.relation_tsv import RelationTSVDataset

class MyDataset(RelationTSVDataset):
    def __init__(self, yaml_file, extra_fields=(), transforms=None,
            is_load_label=True, **kwargs):

        super(MyDataset, self).__init__(yaml_file, extra_fields, transforms, is_load_label, **kwargs)
    
    def your_own_function(self, idx, call=False):
        # you can overwrite function or add your own functions this way
        pass

That's it. You can also add extra fields to the boxlist, such as segmentation masks (using structures.segmentation_mask.SegmentationMask), or even your own instance type.

For a full example of how the VGTSVDataset is implemented, check maskrcnn_benchmark/data/datasets/vg_tsv.py.

Once you have created your dataset, it needs to be added in a couple of places:

Adding your own evaluation

To enable your dataset for testing, add a corresponding if statement in maskrcnn_benchmark/data/datasets/evaluation/__init__.py:

if isinstance(dataset, datasets.MyDataset):
        return your_evaluation(**args)

VinVL Feature extraction

The output feature will be encoded as base64

# extract vision features with VinVL object-attribute detection model
# pretrained models at https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/vinvl_model_zoo/vinvl_vg_x152c4.pth
# the associated labelmap at https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/vinvl_model_zoo/VG-SGG-dicts-vgoi6-clipped.json
python tools/test_sg_net.py --config-file sgg_configs/vgattr/vinvl_x152c4.yaml TEST.IMS_PER_BATCH 2 MODEL.WEIGHT models/vinvl/vinvl_vg_x152c4.pth MODEL.ROI_HEADS.NMS_FILTER 1 MODEL.ROI_HEADS.SCORE_THRESH 0.2 DATA_DIR "../maskrcnn-benchmark-1/datasets1" TEST.IGNORE_BOX_REGRESSION True MODEL.ATTRIBUTE_ON True

To extract relation features (union bounding box's feature), in yaml file, set TEST.OUTPUT_RELATION_FEATURE to True, add relation_feature in TEST.TSV_SAVE_SUBSET.

To extract bounding box features, in yaml file, set TEST.OUTPUT_FEATURE to True, add feature in TEST.TSV_SAVE_SUBSET.

Troubleshooting

If you have issues running or compiling this code, we have compiled a list of common issues in TROUBLESHOOTING.md. If your issue is not present there, please feel free to open a new issue.

Citations

Please consider citing this project in your publications if it helps your research. The following is a BibTeX reference. The BibTeX entry requires the url LaTeX package.

@misc{han2021image,
      title={Image Scene Graph Generation (SGG) Benchmark}, 
      author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang},
      year={2021},
      eprint={2107.12604},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

maskrcnn-benchmark is released under the MIT license. See LICENSE for additional details.

Acknowledgement

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022