Material del curso IIC2233 Programación Avanzada 📚

Overview

Contenidos

Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los contenidos se subirán en paquetes de una o varias semanas seguidas, pero para una semana dada, solo es necesario estudiar los contenidos de dicha semana, y no las semanas posteriores incluidas en el paquete.

Los contenidos se pondrán en práctica mediante actividades (formativas o sumativas). El contenido de las actividades es acumulativo, así que la materia vista en semanas anteriores también puede entrar en las actividades posteriores, pero tendrán foco sobre solo uno de los contenidos semanales.

La semana 0 corresponde a la primera semana de clases, en la cual no habrá una actividad de contenidos, sino que una introducción al formato del curso. La carpeta semana 0 de todas formas contiene material de estudio que se asumirá conocido y se aplicará durante todo el curso, y específicamente se evaluará en la primera tarea del curso (T0), en lugar de en una actividad.

La numeración de semanas que siguen, respeta el orden temporal del calendario académico, por lo que la semana 9 es saltada debido a la Semana de Receso a nivel UC, mientras que la semana 10 se dejará como repaso con actividades/contenido por definir.

La siguiente tabla muestra la correspondencia de actividades y los contenidos semanales:

Actividad Tipo Semana de contenido Contenido
- - Semana 0 Introducción al curso
AF1 Formativa Semana 1 Estructuras de datos built-ins
AF2 Formativa Semana 2 Programación orientada a objetos I
AS1 Sumativa Semana 3 Programación orientada a objetos II
- - Semana 4 Excepciones
- - Semana 5 -
AS2 Sumativa Semana 6 Threading
- - Semana 7 Interfaces gráficas I
AS3 Sumativa Semana 8 Interfaces gráficas II
- - Semana 9 I/O y Serialización
AF3 Formativa Semana 10 Networking
- - Semana 11 Estructuras nodales I
AS4 Formativa Semana 12 Estructuras nodales II
AF4 - Semana 13 Iterables
- - Semana 14 Material bonus

Si tienes dudas sobre el contenido puedes abrir una issue aquí.

Preguntas frecuentes

  1. Yo abro los notebooks, hago cambios para ver como funcionan, y a la semana siguiente al hacer git pull me sale un error que dice "Your local changes to the following files would be overwritten by merge" ¿Qué puedo hacer?

    1. Siempre puedes clonar el repositorio otra vez, pero no es la idea. Lo que debes hacer es guardar tus cambios en alguna parte, hacer pull, y luego volver a aplicar tus cambios. Para eso coloca los siguientes comandos:
    git stash     # Guarda los cambios hechos en otra parte. Desaparecen del working directory.
    git pull      # El pull que queríamos hacer en un principio.
    git stash pop # Regresa los cambios hechos por ti al working directory.
Owner
IIC2233 @ UC
IIC2233 Programación Avanzada @ Pontificia Universidad Católica de Chile
IIC2233 @ UC
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022