Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

Related tags

Deep LearningPPGS
Overview

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces

PPGS Overview

Environment Setup

  • We recommend pipenv for creating and managing virtual environments (dependencies for other environment managers can be found in Pipfile)
git clone https://github.com/martius-lab/PPGS
cd ppgs
pipenv install
pipenv shell
  • For simplicity, this codebase is ready for training on two of the three environments (IceSlider and DigitJump). They are part of the puzzlegen package, which we provide here, and can be simply installed with
pip install -e https://github.com/martius-lab/puzzlegen
  • Offline datasets can be generated for training and validation. In the case of IceSlider we can use
python -m puzzlegen.extract_trajectories --record-dir /path/to/train_data --env-name ice_slider --start-level 0 --number-levels 1000 --max-steps 20 --n-repeat 20 --random 1
python -m puzzlegen.extract_trajectories --record-dir /path/to/test_data --env-name ice_slider --start-level 1000 --number-levels 1000 --max-steps 20 --n-repeat 5 --random 1
  • Finally, we can add the paths to the extracted datasets in default_params.json as data_params.train_path and data_params.test_path. We should also set the name of the environment for validation in data_params.env_name ("ice_slider" for IceSlider or "digit_jump" for DigitJump).

  • Training and evaluation are performed sequentially by running

python main.py

Configuration

All settings can be handled by editing default_config.json.

Param Default Info
optimizer_params.eps 1e-05 epsilon for Adam
train_params.seed null seed for training
train_params.epochs 40 # of training epochs
train_params.batch_size 128 batch size for training
train_params.save_every_n_epochs 5 how often to save models
train_params.val_every_n_epochs 2 how often to perform validation
train_params.lr_dict - dictionary of learning rates for each component
train_params.loss_weight_dict - dictionary of weights for the three loss functions
train_params.margin 0.1 latent margin epsilon
train_params.hinge_params - hyperparameters for margin loss
train_params.schedule [] learning rate schedule
model_params.name 'ppgs' name of the model to train in ['ppgs', 'latent']
model_params.load_model true whether to load saved model if present
model_params.filters [64, 128, 256, 512] encoder filters
model_params.embedding_size 16 dimensionality of latent space
model_params.normalize true whether to normalize embeddings
model_params.forward_layers 3 layers in MLP forward model for 'latent' world model
model_params.forward_units 256 units in MLP forward model for 'latent' world model
model_params.forward_ln true layer normalization in MLP forward model for 'latent' world model
model_params.inverse_layers 1 layers in MLP inverse model
model_params.inverse_units 32 units in MLP inverse model
model_params.inverse_ln true layer normalization in MLP inverse model
data_params.train_path '' path to training dataset
data_params.test_path '' path to validation dataset
data_params.env_name 'ice_slider' name of environment ('ice_slider' for IceSlider, 'digit_jump' for DigitJump
data_params.seq_len 2 number of steps for multi-step loss
data_params.shuffle true whether to shuffle datasets
data_params.normalize true whether to normalize observations
data_params.encode_position false enables positional encoding
data_params.env_params {} params to pass to environment
eval_params.evaluate_losses true whether to compute evaluation losses
eval_params.evaluate_rollouts true whether to compute solution rates
eval_params.eval_at [1,3,4] # of steps to evaluate at
eval_params.latent_eval_at [1,5,10] K for latent metrics
eval_params.seeds [2000] starting seed for evaluation levels
eval_params.num_levels 100 # evaluation levels
eval_params.batch_size 128 batch size for latent metrics evaluation
eval_params.planner_params.batch_size 256 cutoff for graph search
eval_params.planner_params.margin 0.1 latent margin for reidentification
eval_params.planner_params.early_stop true whether to stop when goal is found
eval_params.planner_params.backtrack false enables backtracking algorithm
eval_params.planner_params.penalize_visited false penalizes visited vertices in graph search
eval_params.planner_params.eps 0 enables epsilon greedy action selection
eval_params.planner_params.max_steps 256 maximal solution length
eval_params.planner_params.replan horizon 10 T_max for full planner
eval_params.planner_params.snap false snaps new vertices to visited ones
working_dir "results/ppgs" directory for checkpoints and results
Owner
Autonomous Learning Group
Autonomous Learning Group
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
571 Dec 25, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022