LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

Overview

LightHuBERT

LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

| Github | Huggingface | SUPERB Leaderboard |

The authors' PyTorch implementation and pretrained models of LightHuBERT.

Pre-Trained Models

Model Pre-Training Dataset Download Link
LightHuBERT Base 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_base.pt
LightHuBERT Small 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_small.pt
LightHuBERT Stage 1 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_stage1.pt

Actually, the pre-trained is trained in common.fp16: true so that we can perform model inference with fp16 weights.

Requirements and Installation

  • PyTorch version >= 1.8.1
  • Python version >= 3.6
  • numpy version >= 1.19.3
  • To install lighthubert:
git clone [email protected]:mechanicalsea/lighthubert.git
cd lighthubert
pip install --editable .

Load Pre-Trained Models for Inference

import torch
from lighthubert import LightHuBERT, LightHuBERTConfig

wav_input_16khz = torch.randn(1,10000).cuda()

# load the pre-trained checkpoints
checkpoint = torch.load('/path/to/lighthubert.pt')
cfg = LightHuBERTConfig(checkpoint['cfg']['model'])
cfg.supernet_type = 'base'
model = LightHuBERT(cfg)
model = model.cuda()
model = model.eval()
print(model.load_state_dict(checkpoint['model'], strict=False))

# (optional) set a subnet
subnet = model.supernet.sample_subnet()
model.set_sample_config(subnet)
params = model.calc_sampled_param_num()
print(f"subnet (Params {params / 1e6:.0f}M) | {subnet}")

# extract the the representation of last layer
rep = model.extract_features(wav_input_16khz)[0]

# extract the the representation of each layer
hs = model.extract_features(wav_input_16khz, ret_hs=True)[0]

print(f"Representation at bottom hidden states: {torch.allclose(rep, hs[-1])}")

More examples can be found in our tutorials.

Universal Representation Evaluation on SUPERB

SUPERB Leaderboard

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are based on the FAIRSEQ project.

Reference

If you find our work is useful in your research, please cite the following paper:

@article{wang2022lighthubert,
  title={{LightHuBERT}: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit {BERT}},
  author={Rui Wang and Qibing Bai and Junyi Ao and Long Zhou and Zhixiang Xiong and Zhihua Wei and Yu Zhang and Tom Ko and Haizhou Li},
  journal={arXiv preprint arXiv:2203.15610},
  year={2022}
}

Contact Information

For help or issues using LightHuBERT models, please submit a GitHub issue.

For other communications related to LightHuBERT, please contact Rui Wang ([email protected]).

Owner
WangRui
make improvement
WangRui
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022