Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Overview

Dependencies

NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please try again, and if you're still stuck please send me an email: [email protected]

Paper Link: https://arxiv.org/abs/1905.10674

  1. Comet ML for logging. You will need an API key, username, and project name to do online logging.
  2. Pytorch version=1.0
  3. scikit-learn
  4. tqdm for progress bar
  5. pickle
  6. json
  7. joblib
  8. networkx for creating reddit graph

To conduct experiments you will need to download the appropriate datasets and preprocess them with the given preprocesssing scripts. This will involve changing the file paths from their default ones. For FB15k-237 there is the main dataset as well as the entity types dataset (links are provided in the main paper). Further, note that reddit uses 2 steps of preprocessing, the first to parse the json objects and then a second one to create the K-core graph.

Sample Commands

To reproduce the results we provide sample commands. Command Line arguments control which sensitive attributes are use and whether there is a compositional adversary or not.

  1. FB15k-237: ipython --pdb -- paper_trans_e.py --namestr='FB15k Comp Gamma=1000' --do_log --num_epochs=100 --embed_dim=20 --test_new_disc --sample_mask=True --use_attr=True --gamma=1000 --valid_freq=50

  2. MovieLens1M:

ipython --pdb -- main_movielens.py --namestr='100 GCMC Comp and Dummy' --use_cross_entropy --num_epochs=200 --test_new_disc --use_1M=True --show_tqdm=True --report_bias=True --valid_freq=5 --use_gcmc=True --num_classifier_epochs=200 --embed_dim=30 --sample_mask=True --use_attr=True --gamma=10 --do_log

  1. Reddit:

ipython --pdb -- main_reddit.py --namestr='Reddit Compositional No Held Out V2 Gamma=1' --valid_freq=5 --num_sensitive=10 --use_attr=True --use_cross_entropy --test_new_disc --num_epochs=50 --num_nce=1 --sample_mask=True --debug --gamma=1000

If you use this codebase or ideas in the paper please cite:

@article{bose2019compositional, \ title={Compositional Fairness Constraints for Graph Embeddings},\ author={Bose, Avishek Joey and Hamilton, William},\ conference={Proceedings of the Thirty-sixth International Conference on Machine Learning, Long Beach CA},\ year={2019} \ }

Owner
Avishek (Joey) Bose
I’m a PhD student at McGill / MILA where I work on Generative Models and Graph Representation Learning. Previously at Uber AI, UofT and Borealis AI
Avishek (Joey) Bose
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022
Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction

MGNN-SPred This is our Tensorflow implementation for the paper: WenWang,Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan Zha. 2020. Bey

Wen Wang 18 Jan 02, 2023
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022