The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

Overview

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction

The implementation of the accepted paper "Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN utilizes a User-Behavior Voucher Graph (UVG) to extract complex user-voucher-item relationship and the attention mechanism to capture users' long-term voucher redemption preference. Experiments shows that DMBGN achieves 10%-16% relative AUC improvement over Deep Neural Networks (DNN), and 2% to 4% AUC improvement over Deep Interest Network (DIN).

Benchmark Dataset

A randomly desensitized sampled dataset from one of the large-scaled production dataset from from Lazada (Alibaba Group) is included. The dataset contains three dataframes corresponding users' voucher collection logs, related user behavior logs and related item features, a detailed description can be found in ./data/README.md file.

We hope this dataset could help to facilitate research in the voucher redemption rate prediction field.

DMBGN Performance

Compared Models:

  • LR: Logistic Regression [1], a shallow model.
  • GBDT: Gradient Boosting Decision Tree [2], a tree-based non deep-learning model.
  • DNN: Deep Neural Networks.
  • WDL: Wide and Deep model [3], a widely accepted model in real industrial applications with an additional linear model besides the deep model compared to DNN.
  • DIN: Deep Interest Network [4], an attention-based model in recommendation systems that has been proven successful in Alibaba.

The experimental results on the public sample dataset are as follows:

Model AUC RelaImpr(DNN) RelaImpr(DIN) Logloss
LR 0.7377 -9.22% -14.28% 0.3897
xgBoost 0.7759 5.40% -0.48% 0.3640
DNN 0.7618 0.00% -5.57% 0.3775
WDL 0.7716 3.73% -2.05% 0.3717
DIN 0.7773 5.90% 0.00% 0.3688
DMBGN_AvgPooling 0.7789 6.54% 0.61% 0.3684
DMBGN_Pretrained 0.7804 7.11% 1.14% 0.3680
DMBGN 0.7885 10.20% 4.06% 0.3616

Note that this dataset is a random sample from dataset Region-C and the performance is different as in the submitted paper due to the smaller sample size (especially xgBoost). However, the conclusion from the experiment results is consistent with the submitted paper, where DMBGN achieves 10.20% relative AUC improvement over DNN and 4.6% uplift over DIN.

image info

How To Use

All experiment codes are organized into the DMBGN_SIGKDD21-release.ipynb jupyter notebook including corresponding running logs, detail code implementation of each model (LR, GBDT, DNN, WDL, DIN, DMBGN) can be found in ./models folder.

To run the experiments, simply start a jupyter notebook and run all code cells in the DMBGN_SIGKDD21-release.ipynb file and check the output logs. Alternatively, you can refer to the existing log outputs in the notebook file. (If you encounter "Sorry, something went wrong. Roload?" error message, just click Reload and the notebook will show.)

To use the DMBGN model, please refer to the code implementation in ./models/DMBGN.py.

Minimum Requirement

python: 3.7.1
numpy: 1.19.5
pandas 1.2.1
pandasql 0.7.3
torch: 1.7.1
torch_geometric: 1.6.3
torch: 1.7.1
torch-cluster: 1.5.8
torch-geometric: 1.6.3
torch-scatter: 2.0.5
torch-sparse: 0.6.8
torch-spline-conv: 1.2.0
torchaudio: 0.7.2
torchvision: 0.8.2
deepctr-torch: 0.2.3
pickle: 4.0

What To Do

  • We are currently deploying DMBGN model online for Lazada voucher related business, the online A/B testing performance will be reported soon.
  • More detailed code comments are being added.

Acknowledgment

Our code implementation is developed based on the Deep Interest Network (DIN) codes from the DeepCTR package, with modification to fit DMBGN model architecture and multi-GPU usage.

We thanks the anonymous reviewers for their time and feedback.

Reference

  • [1] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al.2013. Ad click prediction: a view from the trenches. InProceedings of the 19thACM SIGKDD international conference on Knowledge discovery and data mining.1222–1230.
  • [2] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boostingdecision tree.Advances in neural information processing systems30 (2017), 3146–3154.
  • [3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, RohanAnil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.2016. Wide & Deep Learning for Recommender Systems.CoRRabs/1606.07792(2016). arXiv:1606.07792 http://arxiv.org/abs/1606.07792 .
  • [4] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, YanghuiYan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-throughrate prediction. InProceedings of the 24th ACM SIGKDD International Conferenceon Knowledge Discovery & Data Mining. 1059–1068.
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".

GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement

98 Dec 28, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Handling Information Loss of Graph Neural Networks for Session-based Recommendation

LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro

Tianwen CHEN 62 Dec 03, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
Pytorch domain library for recommendation systems

TorchRec (Experimental Release) TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale

Meta Research 1.3k Jan 05, 2023
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022