Spatial Action Maps for Mobile Manipulation (RSS 2020)

Overview

spatial-action-maps

Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many new improvements to the codebase, and while the focus is on multi-agent, it also supports single-agent training.


This code release accompanies the following paper:

Spatial Action Maps for Mobile Manipulation

Jimmy Wu, Xingyuan Sun, Andy Zeng, Shuran Song, Johnny Lee, Szymon Rusinkiewicz, Thomas Funkhouser

Robotics: Science and Systems (RSS), 2020

Project Page | PDF | arXiv | Video

Abstract: Typical end-to-end formulations for learning robotic navigation involve predicting a small set of steering command actions (e.g., step forward, turn left, turn right, etc.) from images of the current state (e.g., a bird's-eye view of a SLAM reconstruction). Instead, we show that it can be advantageous to learn with dense action representations defined in the same domain as the state. In this work, we present "spatial action maps," in which the set of possible actions is represented by a pixel map (aligned with the input image of the current state), where each pixel represents a local navigational endpoint at the corresponding scene location. Using ConvNets to infer spatial action maps from state images, action predictions are thereby spatially anchored on local visual features in the scene, enabling significantly faster learning of complex behaviors for mobile manipulation tasks with reinforcement learning. In our experiments, we task a robot with pushing objects to a goal location, and find that policies learned with spatial action maps achieve much better performance than traditional alternatives.

Installation

We recommend using a conda environment for this codebase. The following commands will set up a new conda environment with the correct requirements (tested on Ubuntu 18.04.3 LTS):

# Create and activate new conda env
conda create -y -n my-conda-env python=3.7
conda activate my-conda-env

# Install pytorch and numpy
conda install -y pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
conda install -y numpy=1.17.3

# Install pip requirements
pip install -r requirements.txt

# Install shortest path module (used in simulation environment)
cd spfa
python setup.py install

Quickstart

We provide four pretrained policies, one for each test environment. Use download-pretrained.sh to download them:

./download-pretrained.sh

You can then use enjoy.py to run a trained policy in the simulation environment.

For example, to load the pretrained policy for SmallEmpty, you can run:

python enjoy.py --config-path logs/20200125T213536-small_empty/config.yml

You can also run enjoy.py without specifying a config path, and it will find all policies in the logs directory and allow you to pick one to run:

python enjoy.py

Training in the Simulation Environment

The config/experiments directory contains template config files for all experiments in the paper. To start a training run, you can give one of the template config files to the train.py script. For example, the following will train a policy on the SmallEmpty environment:

python train.py config/experiments/base/small_empty.yml

The training script will create a log directory and checkpoint directory for the new training run inside logs/ and checkpoints/, respectively. Inside the log directory, it will also create a new config file called config.yml, which stores training run config variables and can be used to resume training or to load a trained policy for evaluation.

Simulation Environment

To explore the simulation environment using our proposed dense action space (spatial action maps), you can use the tools_click_agent.py script, which will allow you to click on the local overhead map to select actions and move around in the environment.

python tools_click_agent.py

Evaluation

Trained policies can be evaluated using the evaluate.py script, which takes in the config path for the training run. For example, to evaluate the SmallEmpty pretrained policy, you can run:

python evaluate.py --config-path logs/20200125T213536-small_empty/config.yml

This will load the trained policy from the specified training run, and run evaluation on it. The results are saved to an .npy file in the eval directory. You can then run jupyter notebook and navigate to eval_summary.ipynb to load the .npy files and generate tables and plots of the results.

Running in the Real Environment

We train policies in simulation and run them directly on the real robot by mirroring the real environment inside the simulation. To do this, we first use ArUco markers to estimate 2D poses of robots and cubes in the real environment, and then use the estimated poses to update the simulation. Note that setting up the real environment, particularly the marker pose estimation, can take a fair amount of time and effort.

Vector SDK Setup

If you previously ran pip install -r requirements.txt following the installation instructions above, the anki_vector library should already be installed. Run the following command to set up each robot you plan to use:

python -m anki_vector.configure

After the setup is complete, you can open the Vector config file located at ~/.anki_vector/sdk_config.ini to verify that all of your robots are present.

You can also run some of the official examples to verify that the setup procedure worked. For further reference, please see the Vector SDK documentation.

Connecting to the Vector

The following command will try to connect to all the robots in your Vector config file and keep them still. It will print out a message for each robot it successfully connects to, and can be used to verify that the Vector SDK can connect to all of your robots.

python vector_keep_still.py

Note: If you get the following error, you will need to make a small fix to the anki_vector library.

AttributeError: module 'anki_vector.connection' has no attribute 'CONTROL_PRIORITY_LEVEL'

Locate the anki_vector/behavior.py file inside your installed conda libraries. The full path should be in the error message. At the bottom of anki_vector/behavior.py, change connection.CONTROL_PRIORITY_LEVEL.RESERVE_CONTROL to connection.ControlPriorityLevel.RESERVE_CONTROL.


Sometimes the IP addresses of your robots will change. To update the Vector config file with the new IP addresses, you can run the following command:

python vector_run_mdns.py

The script uses mDNS to find all Vector robots on the local network, and will automatically update their IP addresses in the Vector config file. It will also print out the hostname, IP address, and MAC address of every robot found. Make sure zeroconf is installed (pip install zeroconf) or mDNS may not work well. Alternatively, you can just open the Vector config file at ~/.anki_vector/sdk_config.ini in a text editor and manually update the IP addresses.

Controlling the Vector

The vector_keyboard_controller.py script is adapted from the remote control example in the official SDK, and can be used to verify that you are able to control the robot using the Vector SDK. Use it as follows:

python vector_keyboard_controller.py --robot-index ROBOT_INDEX

The --robot-index argument specifies the robot you wish to control and refers to the index of the robot in the Vector config file (~/.anki_vector/sdk_config.ini). If no robot index is specified, the script will check all robots in the Vector config file and select the first robot it is able to connect to.

3D Printed Parts

The real environment setup contains some 3D printed parts. We used the Sindoh 3DWOX 1 3D printer to print them, but other printers should work too. We used PLA filament. All 3D model files are in the stl directory:

  • cube.stl: 3D model for the cubes (objects)
  • blade.stl: 3D model for the bulldozer blade attached to the front of the robot
  • board-corner.stl: 3D model for the board corners, which are used for pose estimation with ArUco markers

Running Trained Policies on the Real Robot

First see the aruco directory for instructions on setting up pose estimation with ArUco markers.

Once the setup is completed, make sure the pose estimation server is started before proceeding:

cd aruco
python server.py

The vector_click_agent.py script is analogous to tools_click_agent.py, and allows you to click on the local overhead map to control the real robot. The script is also useful for verifying that all components of the real environment setup are working correctly, including pose estimation and robot control. The simulation environment should mirror the real setup with millimeter-level precision. You can start it using the following command:

python vector_click_agent.py --robot-index ROBOT_INDEX

If the poses in the simulation do not look correct, you can restart the pose estimation server with the --debug flag to enable debug visualizations:

cd aruco
python server.py --debug

Once you have verified that manual control with vector_click_agent.py works, you can then run a trained policy using the vector_enjoy.py script. For example, to load the SmallEmpty pretrained policy, you can run:

python vector_enjoy.py --robot-index ROBOT_INDEX --config-path logs/20200125T213536-small_empty/config.yml

Citation

If you find this work useful for your research, please consider citing:

@inproceedings{wu2020spatial,
  title = {Spatial Action Maps for Mobile Manipulation},
  author = {Wu, Jimmy and Sun, Xingyuan and Zeng, Andy and Song, Shuran and Lee, Johnny and Rusinkiewicz, Szymon and Funkhouser, Thomas},
  booktitle = {Proceedings of Robotics: Science and Systems (RSS)},
  year = {2020}
}
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022