A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

Overview

<<<<<<< HEAD

S2ANet-custom-dataset

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

Align Deep Features for Oriented Object Detection

Align Deep Features for Oriented Object Detection,
Jiaming Han*, Jian Ding*, Jie Li, Gui-Song Xia,
arXiv preprint (arXiv:2008.09397) / TGRS (IEEE Xplore).

The repo is based on mmdetection, S2ANet branch pytorch1.9, and UCAS-AOD-benchmark thanks to their work.

Two versions are provided here: Original version and v20210104. We recommend to use v20210104 (i.e. the master branch).

Introduction

As there is a need for me to run S2ANet on UCAS_AOD. However, there is no present work to do this. This repo is both a tutorial and an extension to original project S2ANet. Besides, I used UCAS-AOD-benchmark to prepare for dataset.

The main problems this repo solved are:

  • custom dataset training(UCAS_AOD as an example)
  • change the backbone to ResNeXt101x64_4d to gain more performance.(this pretrain model is provided in the link below, after downloading, move it to torch pretrain cache dir)
  • a tutorial for begineers in remote-sensing
  • provide some pretrained models with baidu Netdisk
  • align the accuracy provided in UCAS-AOD-benchmark (The Reason might be training params for I only have RTX3060 12G)

Results for UCAS_AOD

class ap
car 80.75557185
airplane 90.64514424
pretrained model file can be downloaded here. code: 0lsj

Tutorial for custom training

files to be added :

  • DOTA_devkit/ucas_aod_evaluation.py
  • mmdet/datasets/UCAS_AOD.py
  • tools/test.py
  • configs/ucasaod/*

The first one is used when evaluating.
The second one is for loading custom dataset(like this directory in UCAS_AOD_Benchmark).
The third is adding params for evaluating.
The fourth is config file for training.

Something Important to be noticed

  • 1.the processed dataset anno filed(.txt) have 14 cols, and they are $class,x_1,y_1,x_2,y_2,x_3,y_3,x_4,y_4,theta,x,y, width,height$. And theta is angle not arc(see here).

Citation

@article{han2021align,  
  author={J. {Han} and J. {Ding} and J. {Li} and G. -S. {Xia}},  
  journal={IEEE Transactions on Geoscience and Remote Sensing},   
  title={Align Deep Features for Oriented Object Detection},   
  year={2021}, 
  pages={1-11},  
  doi={10.1109/TGRS.2021.3062048}}

@inproceedings{xia2018dota,
  title={DOTA: A large-scale dataset for object detection in aerial images},
  author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3974--3983},
  year={2018}
}

@InProceedings{Ding_2019_CVPR,
  author = {Ding, Jian and Xue, Nan and Long, Yang and Xia, Gui-Song and Lu, Qikai},
  title = {Learning RoI Transformer for Oriented Object Detection in Aerial Images},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2019}
}

@article{chen2019mmdetection,
  title={MMDetection: Open mmlab detection toolbox and benchmark},
  author={Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Xu, Jiarui and others},
  journal={arXiv preprint arXiv:1906.07155},
  year={2019}
}

pytorch1.9

Owner
jedibobo
jedibobo
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022