EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs.

Overview

EPViz (EEG Prediction Visualizer)

EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs. A lightweight and standalone software package developed in Python, EPViz allows researchers to load a PyTorch deep learning model, apply it to the EEG, and overlay the output channel-wise or subject-level temporal predictions on top of the original time series. 

Installation:

Clone the repository git clone https://github.com/jcraley/epviz.git

Python >= 3.7 is required. Other packages can be installed by creating a virtual environment and using the provided requirements.txt file.

To create the virtual environment:

python3 -m venv eeg-gui-venv

Activate the environment (MacOS and Linux):

source eeg-gui-venv/bin/activate

Activate the environment (Windows):

.\eeg-gui-venv\Scripts\activate

Install required packages:

pip install numpy==1.21.2
pip install -r requirements.txt

Running the visualizer:

You can then run the visualizer from the main folder using
python visualization/plot.py

For more command line options, see the section below.

Find an issue? Let us know..

Documentation:

You can find documentation here.

Features:

EDF files:
Average reference and longitudinal bipolar montages with the typical channel naming conventions are supported. Other channels can be plotted but will not be considered part of the montage.

Loading predictions:
Predictions can be loaded as pytorch (.pt) files or using preprocessed data and a model (also saved as .pt files). In both cases, the output is expected to be of length (number of samples in the edf file / k) = c where k and c are integers. Channel-wise predictions will be plotted starting from the top of the screen.

Saving to .edf:
This will save the signals that are currently being plotted. If the signals are filtered and predictions are plotted, filtered signals will be saved and predictions will be saved as well.

Saving to .png:
This will save an image of the current graph along with any predictions that are plotted.

Command line options:

We have added command line options to streamline use:

python visualization/plot.py --show {0 | 1} --fn [EDF_FILE] --montage-file [TXT_FILE] 
--predictions-file [PT_FILE] --prediction-thresh [THRESH]
--filter {0 | 1} [LOW_PASS_FS] [HIGH_PASS_FS] [NOTCH_FS] [BAND_PASS_FS_1] [BAND_PASS_FS_2] 
--location [INT] --window-width {5 | 10 | 15 | 20 | 25 | 30} --export-png-file [PNG_FILE]
--plot-title [TITLE] --print-annotations {0 | 1} --line-thickness [THICKNESS] --font-size [FONT_SIZE]
--save-edf-fn [EDF_FILE] --anonymize-edf {0 | 1}

These options include:

  • Whether or not to show the visualizer
  • The .edf file to load
  • What montage to use
  • Predictions to load
  • Threshold to use for the predictions
  • Filter specifications
  • Where in time to load the graph
  • How many seconds to show in the window
  • Name of .png file to save the graph
    • The title of the saved graph
    • Whether to show annotations on the saved graph
    • Line thickness of the saved graph
    • Font size for the saved graph
  • Name of the .edf file to save
    • Whether or not to anonymize the file

Tests:

Unit tests are located in the tests directory. To run the tests:

./run_tests

All tests will be run via a Github Action when pull requests are created.

Style guide:

We are using Pylint to ensure quality code style in accordance with PEP 8 guidelines.

To run Pylint on the visualizer code:

./run_pylint

Test files:

Test files come from the CHB-MIT database 1, 2 and the TUH EEG Corpus 3. The license for the CHB-MIT data can be found here.

The test files used in this repo are chb01_03 (from CHB) and 00013145_s004_t004 (from TUH). They have been renamed for convenience.

Citations for CHB-MIT dataset:

  1. Ali Shoeb. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. PhD Thesis, Massachusetts Institute of Technology, September 2009.
  2. Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
Owner
Jeff
Jeff
A Bokeh project developed for learning and teaching Bokeh interactive plotting!

Bokeh-Python-Visualization A Bokeh project developed for learning and teaching Bokeh interactive plotting! See my medium blog posts about making bokeh

Will Koehrsen 350 Dec 05, 2022
Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Dylan Tintenfich 55 Dec 28, 2022
kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. 📈 🐶 ❤️

Kyle Verhoog 2 Nov 21, 2021
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
Easily convert matplotlib plots from Python into interactive Leaflet web maps.

mplleaflet mplleaflet is a Python library that converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map. It can also embe

Jacob Wasserman 502 Dec 28, 2022
Type-safe YAML parser and validator.

StrictYAML StrictYAML is a type-safe YAML parser that parses and validates a restricted subset of the YAML specification. Priorities: Beautiful API Re

Colm O'Connor 1.2k Jan 04, 2023
:bowtie: Create a dashboard with python!

Installation | Documentation | Gitter Chat | Google Group Bowtie Introduction Bowtie is a library for writing dashboards in Python. No need to know we

Jacques Kvam 753 Dec 22, 2022
This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, reading data from PubSub.

Sample streaming Dataflow pipeline written in Python This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, readin

Israel Herraiz 9 Mar 18, 2022
This is a super simple visualization toolbox (script) for transformer attention visualization ✌

Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m

Mingyu Wang 3 Jul 09, 2022
Tools for exploratory data analysis in Python

Dora Exploratory data analysis toolkit for Python. Contents Summary Setup Usage Reading Data & Configuration Cleaning Feature Selection & Extraction V

Nathan Epstein 599 Dec 25, 2022
Simple function to plot multiple barplots in the same figure.

Simple function to plot multiple barplots in the same figure. Supports padding and custom color.

Matthias Jakobs 2 Feb 21, 2022
University of Missouri - Kansas City: CS451R: Capstone

CS451RC University of Missouri - Kansas City: CS451R: Capstone Installation cd git clone https://github.com/ala2q6/CS451RC.git cd CS451RC pip3 instal

Alex Arbuckle 1 Nov 17, 2021
A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

Pooya 1 Dec 02, 2021
UNMAINTAINED! Renders beautiful SVG maps in Python.

Kartograph is not maintained anymore As you probably already guessed from the commit history in this repo, Kartograph.py is not maintained, which mean

1k Dec 09, 2022
plotly scatterplots which show molecule images on hover!

molplotly Plotly scatterplots which show molecule images on hovering over the datapoints! Required packages: pandas rdkit jupyter_dash ➡️ See example.

150 Dec 28, 2022
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023
An open-source plotting library for statistical data.

Lets-Plot Lets-Plot is an open-source plotting library for statistical data. It is implemented using the Kotlin programming language. The design of Le

JetBrains 820 Jan 06, 2023
A package for plotting maps in R with ggplot2

Attention! Google has recently changed its API requirements, and ggmap users are now required to register with Google. From a user’s perspective, ther

David Kahle 719 Jan 04, 2023
Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts

Data-FX Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts Currently, there are only 2 chart option

Landon Ferguson 20 Nov 21, 2022
Lightweight, extensible data validation library for Python

Cerberus Cerberus is a lightweight and extensible data validation library for Python. v = Validator({'name': {'type': 'string'}}) v.validate({

eve 2.9k Dec 27, 2022