EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs.

Overview

EPViz (EEG Prediction Visualizer)

EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs. A lightweight and standalone software package developed in Python, EPViz allows researchers to load a PyTorch deep learning model, apply it to the EEG, and overlay the output channel-wise or subject-level temporal predictions on top of the original time series. 

Installation:

Clone the repository git clone https://github.com/jcraley/epviz.git

Python >= 3.7 is required. Other packages can be installed by creating a virtual environment and using the provided requirements.txt file.

To create the virtual environment:

python3 -m venv eeg-gui-venv

Activate the environment (MacOS and Linux):

source eeg-gui-venv/bin/activate

Activate the environment (Windows):

.\eeg-gui-venv\Scripts\activate

Install required packages:

pip install numpy==1.21.2
pip install -r requirements.txt

Running the visualizer:

You can then run the visualizer from the main folder using
python visualization/plot.py

For more command line options, see the section below.

Find an issue? Let us know..

Documentation:

You can find documentation here.

Features:

EDF files:
Average reference and longitudinal bipolar montages with the typical channel naming conventions are supported. Other channels can be plotted but will not be considered part of the montage.

Loading predictions:
Predictions can be loaded as pytorch (.pt) files or using preprocessed data and a model (also saved as .pt files). In both cases, the output is expected to be of length (number of samples in the edf file / k) = c where k and c are integers. Channel-wise predictions will be plotted starting from the top of the screen.

Saving to .edf:
This will save the signals that are currently being plotted. If the signals are filtered and predictions are plotted, filtered signals will be saved and predictions will be saved as well.

Saving to .png:
This will save an image of the current graph along with any predictions that are plotted.

Command line options:

We have added command line options to streamline use:

python visualization/plot.py --show {0 | 1} --fn [EDF_FILE] --montage-file [TXT_FILE] 
--predictions-file [PT_FILE] --prediction-thresh [THRESH]
--filter {0 | 1} [LOW_PASS_FS] [HIGH_PASS_FS] [NOTCH_FS] [BAND_PASS_FS_1] [BAND_PASS_FS_2] 
--location [INT] --window-width {5 | 10 | 15 | 20 | 25 | 30} --export-png-file [PNG_FILE]
--plot-title [TITLE] --print-annotations {0 | 1} --line-thickness [THICKNESS] --font-size [FONT_SIZE]
--save-edf-fn [EDF_FILE] --anonymize-edf {0 | 1}

These options include:

  • Whether or not to show the visualizer
  • The .edf file to load
  • What montage to use
  • Predictions to load
  • Threshold to use for the predictions
  • Filter specifications
  • Where in time to load the graph
  • How many seconds to show in the window
  • Name of .png file to save the graph
    • The title of the saved graph
    • Whether to show annotations on the saved graph
    • Line thickness of the saved graph
    • Font size for the saved graph
  • Name of the .edf file to save
    • Whether or not to anonymize the file

Tests:

Unit tests are located in the tests directory. To run the tests:

./run_tests

All tests will be run via a Github Action when pull requests are created.

Style guide:

We are using Pylint to ensure quality code style in accordance with PEP 8 guidelines.

To run Pylint on the visualizer code:

./run_pylint

Test files:

Test files come from the CHB-MIT database 1, 2 and the TUH EEG Corpus 3. The license for the CHB-MIT data can be found here.

The test files used in this repo are chb01_03 (from CHB) and 00013145_s004_t004 (from TUH). They have been renamed for convenience.

Citations for CHB-MIT dataset:

  1. Ali Shoeb. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. PhD Thesis, Massachusetts Institute of Technology, September 2009.
  2. Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
Owner
Jeff
Jeff
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021
Data parsing and validation using Python type hints

pydantic Data validation and settings management using Python type hinting. Fast and extensible, pydantic plays nicely with your linters/IDE/brain. De

Samuel Colvin 12.1k Jan 06, 2023
A site that displays up to date COVID-19 stats, powered by fastpages.

https://covid19dashboards.com This project was built with fastpages Background This project showcases how you can use fastpages to create a static das

GitHub 1.6k Jan 07, 2023
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
ecoglib: visualization and statistics for high density microecog signals

ecoglib: visualization and statistics for high density microecog signals This library contains high-level analysis tools for "topos" and "chronos" asp

1 Nov 17, 2021
Log visualizer for whirl-framework

Lumberjack Log visualizer for whirl-framework Установка pip install -r requirements.txt Как пользоваться python3 lumberjack.py -l путь до лога -o

Vladimir Malinovskii 2 Dec 19, 2022
web application for flight log analysis & review

Flight Review This is a web application for flight log analysis. It allows users to upload ULog flight logs, and analyze them through the browser. It

PX4 Drone Autopilot 145 Dec 20, 2022
Political elections, appointment, analysis and visualization in Python

Political elections, appointment, analysis and visualization in Python poli-sci-kit is a Python package for political science appointment and election

Andrew Tavis McAllister 9 Dec 01, 2022
This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played till Jan 2022.

Scraping-test-matches-data This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played ti

Souradeep Banerjee 4 Oct 10, 2022
A simple interpreted language for creating basic mathematical graphs.

graphr Introduction graphr is a small language written to create basic mathematical graphs. It is an interpreted language written in python and essent

2 Dec 26, 2021
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
Schema validation for Xarray objects

xarray-schema Schema validation for Xarray installation This package is in the early stages of development. Install it from source: pip install git+gi

carbonplan 22 Oct 31, 2022
With Holoviews, your data visualizes itself.

HoloViews Stop plotting your data - annotate your data and let it visualize itself. HoloViews is an open-source Python library designed to make data a

HoloViz 2.3k Jan 04, 2023
The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

Timescale NFT Starter Kit The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualiz

Timescale 102 Dec 24, 2022
Visualize data of Vietnam's regions with interactive maps.

Plotting Vietnam Development Map This is my personal project that I use plotly to analyse and visualize data of Vietnam's regions with interactive map

1 Jun 26, 2022
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023
kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. 📈 🐶 ❤️

Kyle Verhoog 2 Nov 21, 2021
A python script to visualise explain plans as a graph using graphviz

README Needs to be improved Prerequisites Need to have graphiz installed on the machine. Refer to https://graphviz.readthedocs.io/en/stable/manual.htm

Edward Mallia 1 Sep 28, 2021
Kglab - an abstraction layer in Python for building knowledge graphs

Graph Data Science: an abstraction layer in Python for building knowledge graphs, integrated with popular graph libraries – atop Pandas, RDFlib, pySHACL, RAPIDS, NetworkX, iGraph, PyVis, pslpython, p

derwen.ai 466 Jan 09, 2023
Create animated and pretty Pandas Dataframe or Pandas Series

Rich DataFrame Create animated and pretty Pandas Dataframe or Pandas Series, as shown below: Installation pip install rich-dataframe Usage Minimal exa

Khuyen Tran 92 Dec 26, 2022