PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

Overview

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning" by Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara L. Berg, and Mohit Bansal

Generating multi-sentence descriptions for videos is one of the most challenging captioning tasks due to its high requirements for not only visual relevance but also discourse-based coherence across the sentences in the paragraph. Towards this goal, we propose a new approach called Memory-Augmented Recurrent Transformer (MART), which uses a memory module to augment the transformer architecture. The memory module generates a highly summarized memory state from the video segments and the sentence history so as to help better prediction of the next sentence (w.r.t. coreference and repetition aspects), thus encouraging coherent paragraph generation. Extensive experiments, human evaluations, and qualitative analyses on two popular datasets ActivityNet Captions and YouCookII show that MART generates more coherent and less repetitive paragraph captions than baseline methods, while maintaining relevance to the input video events.

Related works:

Getting started

Prerequisites

  1. Clone this repository
# no need to add --recursive as all dependencies are copied into this repo.
git clone https://github.com/jayleicn/recurrent-transformer.git
cd recurrent-transformer
  1. Prepare feature files

Download features from Google Drive: rt_anet_feat.tar.gz (39GB) and rt_yc2_feat.tar.gz (12GB). These features are repacked from features provided by densecap.

mkdir video_feature && cd video_feature
tar -xf path/to/rt_anet_feat.tar.gz 
tar -xf path/to/rt_yc2_feat.tar.gz 
  1. Install dependencies
  • Python 2.7
  • PyTorch 1.1.0
  • nltk
  • easydict
  • tqdm
  • tensorboardX
  1. Add project root to PYTHONPATH
source setup.sh

Note that you need to do this each time you start a new session.

Training and Inference

We give examples on how to perform training and inference with MART.

  1. Build Vocabulary
bash scripts/build_vocab.sh DATASET_NAME

DATASET_NAME can be anet for ActivityNet Captions or yc2 for YouCookII.

  1. MART training

The general training command is:

bash scripts/train.sh DATASET_NAME MODEL_TYPE

MODEL_TYPE can be one of [mart, xl, xlrg, mtrans, mart_no_recurrence], see details below.

MODEL_TYPE Description
mart Memory Augmented Recurrent Transformer
xl Transformer-XL
xlrg Transformer-XL with recurrent gradient
mtrans Vanilla Transformer
mart_no_recurrence mart with recurrence disabled

To train our MART model on ActivityNet Captions:

bash scripts/train.sh anet mart

Training log and model will be saved at results/anet_re_*.
Once you have a trained model, you can follow the instructions below to generate captions.

  1. Generate captions
bash scripts/translate_greedy.sh anet_re_* val

Replace anet_re_* with your own model directory name. The generated captions are saved at results/anet_re_*/greedy_pred_val.json

  1. Evaluate generated captions
bash scripts/eval.sh anet val results/anet_re_*/greedy_pred_val.json

The results should be comparable with the results we present at Table 2 of the paper. E.g., [email protected] 10.33; [email protected] 5.18.

Citations

If you find this code useful for your research, please cite our paper:

@inproceedings{lei2020mart,
  title={MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning},
  author={Lei, Jie and Wang, Liwei and Shen, Yelong and Yu, Dong and Berg, Tamara L and Bansal, Mohit},
  booktitle={ACL},
  year={2020}
}

Others

This code used resources from the following projects: transformers, transformer-xl, densecap, OpenNMT-py.

Contact

jielei [at] cs.unc.edu

Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022