Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Overview

ClipBERT

Less is More: ClipBERT for Video-and-Language Learning via Sparse Sampling

Jie Lei*, Linjie Li*, Luowei Zhou, Zhe Gan, Tamara L. Berg, Mohit Bansal, Jingjing Liu

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipBERT is designed based on 2D CNNs and transformers, and uses a sparse sampling strategy to enable efficient end-to-end video-and-language learning. In this repository, we support end-to-end pretraining and finetuning for the following tasks:

  • Image-text pretraining on COCO and VG captions.
  • Text-to-video retrieval finetuning on MSRVTT, DiDeMo, and ActivityNet Captions.
  • Video-QA finetuning on TGIF-QA and MSRVTT-QA.
  • Image-QA finetuning on VQA 2.0.

It is also feasible and easy to add other image-text or video-text tasks for pretraining and finetuning.

Requirements

We provide a Docker image for easier reproduction. Please install the following:

Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.

Getting Started

General

  1. Create a folder that stores pretrained models, all the data, and results.

    PATH_TO_STORAGE=/path/to/your/data/
    mkdir -p $PATH_TO_STORAGE/txt_db  # annotations
    mkdir -p $PATH_TO_STORAGE/vis_db  # image and video 
    mkdir -p $PATH_TO_STORAGE/finetune  # finetuning results
    mkdir -p $PATH_TO_STORAGE/pretrained  # pretrained models
  2. Download pretrained models.

    Our e2e pretrained ClipBERT model (849MB), can be downloaded with the following command.

    bash scripts/download_pretrained.sh $PATH_TO_STORAGE

    This pretrained model can be used for finetuning on video-text tasks and image-text tasks. For your convenience, this script will also download bert-base-uncased and grid-feat-vqa model weights, which are used as initialization for pretraining.

  3. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /clipbert instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

Downstream Task Finetuning

Text-to-Video Retrieval

Tasks: MSRVTT retrieval, DiDeMo and ActivityNet Captions paragprah-to-video retrieval, MSRVTT MC Test.

  1. Download data.

    # outside the container  
    # download videos + annotations for $DSET
    bash scripts/download_$DSET.sh $PATH_TO_STORAGE

    $DSET can be one of msrvtt, didemo, anet.

  2. Finetuning.

    # inside the container
    horovodrun -np 4 python src/tasks/run_video_retrieval.py \
        --config $CONFIG_PATH \
        --output_dir $OUTPUT_DIR
    
    # for single GPU
    python src/tasks/run_video_retrieval.py \
        --config $CONFIG_PATH \
        --output_dir $OUTPUT_DIR

    $CONFIG_PATH should be set to one of the .json config files available at src/configs prefixed with _ret. For example, you can use src/configs/msrvtt_ret_base_resnet50.json for MSRVTT retrieval.

  3. Run inference.

    # inside the container
    horovodrun -np 4 python src/tasks/run_video_retrieval.py \
      --do_inference 1 --output_dir $OUTPUT_DIR \
      --inference_split val --inference_model_step $STEP \
      --inference_txt_db $TXT_DB \
      --inference_img_db $IMG_DB --inference_batch_size 64 \
      --inference_n_clips $INFERENCE_N_CLIPS

    $STEP is an integer, it tells the script to use the checkpoint $OUTPUT_DIR/ckpt/model_step_$STEP.pt for inference. $TXT_DB and $IMG_DB are path to annotation file and video data. You can use TXT_DB=/txt/downstream/msrvtt_retrieval/msrvtt_retrieval_val.jsonl and IMG_DB=/img/msrvtt for inference on MSRVTT retrieval val split. The results will be written under $OUTPUT_DIR. You can use different $INFERENCE_N_CLIPS for inference, such as 1 or 16. Using more clips will have a large impact on inference speed and memory usage. You may want to use smaller batch sizes if larger values are set.

    After MSRVTT retrieval model is trained, you can use it for inference for the MSRVTT MC Test task as well, which is essentially a retrieval task in a multiple-choice task setup.

    # inside the container
    horovodrun -np 4 python src/tasks/run_msrvtt_mc.py \
      --do_inference 1 --output_dir $OUTPUT_DIR \
      --inference_split val --inference_model_step $STEP \
      --inference_txt_db /txt/downstream/msrvtt_retrieval_mc/msrvtt_retrieval_mc_test.jsonl \
      --inference_img_db /img/msrvtt --inference_batch_size 64 \
      --inference_n_clips $INFERENCE_N_CLIPS

Video Question Answering

Tasks: TGIF-QA action, transition, and frameQA tasks; MSRVTT-QA.

  1. Download data.

    # outside the container  
    # download MSRVTT videos, and QA + retrieval annotations
    bash scripts/download_msrvtt.sh $PATH_TO_STORAGE  
    # download TGIF-QA videos and annotations
    bash scripts/download_tgif_qa.sh $PATH_TO_STORAGE  
  2. Finetuning.

    # inside the container
    horovodrun -np 4 python src/tasks/run_video_qa.py \
        --config $CONFIG_PATH \
        --output_dir $OUTPUT_DIR

    $CONFIG_PATH should be set to one of the .json config files available at src/configs contains the substring _qa. For example, you can use src/configs/msrvtt_qa_base_resnet50.json for MSRVTT-QA.

  3. Run inference.

    # inside the container
    horovodrun -np 4 python src/tasks/run_video_qa.py \
      --do_inference 1 --output_dir $OUTPUT_DIR \
      --inference_split val --inference_model_step $STEP \
      --inference_txt_db $TXT_DB \
      --inference_img_db $IMG_DB --inference_batch_size 64 \
      --inference_n_clips $INFERENCE_N_CLIPS

    $STEP is an integer, which tells the script to use the checkpoint $OUTPUT_DIR/ckpt/model_step_$STEP.pt for inference. $TXT_DB and $IMG_DB are path to annotation file and video data. You can use TXT_DB=/txt/downstream/msrvtt_retrieval/msrvtt_qa_val.jsonl and IMG_DB=/img/msrvtt for inference on MSRVTT QA val split.

    The results will be written under $OUTPUT_DIR. You can use different $INFERENCE_N_CLIPS for inference, such as 1 or 16. Using more clips will have a large impact on inference speed and memory usage. You may want to use smaller batch sizes if larger values are set.

Image Question Answering (VQA)

  1. Download data

    # outside the container
    # download COCO and VG data
    bash scripts/download_coco_vg.sh $PATH_TO_STORAGE
    # download VQA annotations
    bash scripts/download_vqa.sh $PATH_TO_STORAGE
  2. Finetuning

    # inside the container
    horovodrun -np 4 python src/tasks/run_vqa.py \
        --config src/configs/vqa_base_resnet50.json \
        --output_dir $OUTPUT_DIR
  3. Inference

    # inside the container
    horovodrun -np 4 python src/tasks/run_vqa.py \
      --do_inference 1 --output_dir $OUTPUT_DIR \
      --inference_split val --inference_model_step $STEP \
      --inference_txt_db $TXT_DB \
      --inference_img_db $IMG_DB \
      --inference_batch_size 64

Pretraining

  1. Download data

    # outside the container
    bash scripts/download_coco_vg.sh $PATH_TO_STORAGE
  2. Pretraining

    #inside the container
    horovodrun -np 8 python src/pretrain/run_pretrain.py \
        --config src/configs/pretrain_indomain_base_resnet50_mlm_itm.json \
        --output_dir $OUTPUT_DIR 

Data Preprocessing

ClipBERT takes raw video and text as inputs, there is no need to do feature extraction. However, to improve data loading speed, we use LMDB to store the raw image and video files. You can use the following script to convert a list of videos with file extensions mp4 and avi into LMDB:

# outside the container
python src/preprocessing/file2lmdb.py \
    --data_root /path/to/videos \
    --lmdb_save_dir /path/to/save/lmdb \
    --ext avi mp4 \
    --file_type video 

For images, use appropriate file extensions for --ext and --file_type image. Text annotation files are reorganized into jsonl files, see example preprocessed files downloaded by the scripts in scripts/.

Citation

If you find this code useful for your research, please consider citing:

@article{lei2021less,
  title={Less is More: ClipBERT for Video-and-Language Learningvia Sparse Sampling},
  author={Lei, Jie and Li, Linjie and Zhou, Luowei and Gan, Zhe and Berg, Tamara L. and Bansal, Mohit and Liu, Jingjing},
  journal={arXiv},
  year={2021}
}

Acknowledgement

We thank Yen-Chun Chen and Ruotian Luo for suggestions on the implementation. We also thank other members and interns at Microsoft Multimodal AI for their helpful discussions.

This code used resources from transformers, UNITER, HERO, grid-feats-vqa, SlowFast, Detectron2. The code is implemented using PyTorch, with multi-GPU support from Horovod and mixed precision support from apex. We thank the authors for open-sourcing their awesome projects.

License

MIT

Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Lizhuo 1 Dec 23, 2021
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.

Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. C

Raphael Sourty 224 Nov 29, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
Telegram bot to auto post messages of one channel in another channel as soon as it is posted, without the forwarded tag.

Channel Auto-Post Bot This bot can send all new messages from one channel, directly to another channel (or group, just in case), without the forwarded

Aditya 128 Dec 29, 2022