The Classical Language Toolkit

Overview

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.cltk.org/ for the legacy code and docs.

travis rtd codecov pypi zenodo binder

The Classical Language Toolkit (CLTK) is a Python library offering natural language processing (NLP) for the languages of pre–modern Eurasia.

Installation

For the CLTK's latest pre-release version:

$ pip install --pre cltk
Requirements:

Documentation

Documentation at https://dev.cltk.org.

Citation

@Misc{johnsonetal2014,
 author = {Johnson, Kyle P. and Patrick Burns and John Stewart and Todd Cook},
 title = {CLTK: The Classical Language Toolkit},
 url = {https://github.com/cltk/cltk},
 year = {2014--2020},
}

License

Copyright (c) 2014-2021 Kyle P. Johnson under the MIT License.

Comments
  • Add Sanskrit stopwords

    Add Sanskrit stopwords

    For @Akhilesh28. (Please assign this to yourself.)

    In Sanskrit, a stopword list would include, at least: pronouns and determiners (source), and upasarga (verbal prefix / "preverb" / "preposition") and nipāta (particle) (which I read about here). Also add anything like conjunctions, particles, and interjections.

    Just putting together this list shouldn't take more than one week. Let us know if you're having problems. You can post your stopwords here, first, as a "gist": https://gist.github.com/

    opened by kylepjohnson 55
  • Add IPA Phonetic Transcription for Greek

    Add IPA Phonetic Transcription for Greek

    This ticket is for Jack Duff, with @jtauber generously assisting.

    The basic idea is to make a map of Greek letters and their IPA equivalents, something like:

    {'α': 'a',
    'αι', 'ai',
    'ζ': 'zd',
    'θ': 'tʰ'}
    

    Obviously, it won't all be so easy, due to proximal characters changing pronunciation (for example, "γ" being IPA "ɡ" but before ["κ", "χ", "γ", "μ"] becoming "ŋ").

    If you can get this down for Attic, then consider moving on to other dialects, like Ionic or Koine.

    Within the CLTK's architecture, the transliteration maps and logic should go into something like cltk/phonetics/greek/transcription.py. Or consider making a general transcription entry point at cltk/phonetics/transcription.py and then declaring a which language and dialect. I'll leave the implementation details to you two, though.

    enhancement 
    opened by kylepjohnson 51
  • Words to be added in Sanskrit's Stop Word Collection

    Words to be added in Sanskrit's Stop Word Collection

    • ~सः (He)~
    • ~स्वयम्(himself)~
    • तदीय(theres) -आसम्(be)
    • ज्ञा (have) -परि (with) -शक्नोति(can(verb)) -यद्(if) -कतम(which)

    add all the words in all their different cases, gender and and all 3 numbers(sin, dual, plural) . If you are doing it right, there must be 72 words exactly for each entity(including a few repetitions). Needs to be careful when it come to verb's word form, they are entirely different structures.

    File at: https://github.com/cltk/cltk/blob/master/cltk/stop/sanskrit/stops.py

    opened by nikheelpandey 42
  • Scraping srimad-bhagavadgita and valmiki ramayana.

    Scraping srimad-bhagavadgita and valmiki ramayana.

    • I am Scapping Sanskrit - English data from
      • Srimad-bhagavadgita : http://www.gitasupersite.iitk.ac.in/srimad
      • Valmiki Ramayana : http://www.valmiki.iitk.ac.in/

    Ping @kylepjohnson

    new corpus 
    opened by ghost 36
  • Add corpus for classical telugu

    Add corpus for classical telugu

    https://te.wikisource.org/wiki contains the classical telugu ithihasas, puranas, vedas, stothras, etc; So I would like to scrape them and add as a new corpus.

    Thank you.

    new corpus 
    opened by ghost 31
  • Make stopwords list for Old English

    Make stopwords list for Old English

    To generalize, I observe that there are different approaches to making stopword lists, based either on statistics (most common words, variously calculated) or grammar (definite and indefinite articles, pronouns, etc.) (or some combination).

    In doing this ticket, I would like you to do a little research on whether there exist any good lists for OE. If there is one, let's just take it. If not, we can do a little more research about what's right.

    enhancement easy 
    opened by kylepjohnson 29
  • Scraping Raw Classical Hindi Data

    Scraping Raw Classical Hindi Data

    I am scraping Raw Classical Hindi Data from http://ltrc.iiit.ac.in/showfile.php?filename=downloads/Classical_Hindi_Literature/SHUSHA/index.html @kylepjohnson

    new corpus 
    opened by Akirato 29
  • Add declining tool based on Collatinus and Eulexis ?

    Add declining tool based on Collatinus and Eulexis ?

    Hi there, It's been months I have been thinking about this and I do not think CLTK contains anything like that. Collatinus and Eulexis are two Lemmatizer and Decliners which are open source (their data is either open or easy to reconstruct. And they are a nice bunch of people).

    • Collatinus is in C
      • https://github.com/biblissima/collatinus is the most up to date source code for the flexer / lemmatizer
      • https://github.com/ycollatin/Collatinus-data is the repo for their data (but not up to date I guess ). It seems this is more up to date.
    • Eulexis is in php
      • https://github.com/biblissima/eulexis/blob/master/traitement.php For the whole code

    I'd be happy to convert the collatinus flexer for CLTK in the long run (give or take few months) but I think Eulexis and the lemmatizer part are out of my scope right now.

    What's your opinion on this ? This would help search APIs a lot for text which are not lemmatized.

    opened by PonteIneptique 28
  • Normalize Unicode throughout CLTK

    Normalize Unicode throughout CLTK

    I've been reading about normalize() and hope it will prevent normalization problems in the future. This builtin method solves the problem of accented characters made with combining diacritics not equaling precomposed characters. Examples of this appear in the testing library, where I have struggled to make two strings of accented Greek equal one another.

    Example of normalize() from Fluent Python by Luciano Ramalho (117-118):

    >>> from unicodedata import normalize
    >>> s1 = 'café' # composed "e" with acute accent
    >>> s2 = 'cafe\u0301' # decomposed "e" and acute accent 
    >>> len(s1), len(s2)
    (4, 5)
    >>> len(normalize('NFC', s1)), len(normalize('NFC', s2)) 
    (4, 4)
    >>> len(normalize('NFD', s1)), len(normalize('NFD', s2)) 
    (5, 5)
    >>> normalize('NFC', s1) == normalize('NFC', s2)
    True
    >>> normalize('NFD', s1) == normalize('NFD', s2) 
    True
    

    Solutions

    1. In core, use normalize with the argument 'NFC', as Fluent Python recommends. Not all Greek combining forms may reduce into precomposed … will need to be tested out.

    2. In tests, especially for assertEqual(), check that more complicated strings equal one another. Use normalize('NFC', <text>) on the comparison strings, too, if necessary.

    3. Use this to strip out accented characters coming from the PHI, which I don't do very gracefully here: https://github.com/kylepjohnson/cltk/blob/master/cltk/corpus/utils/formatter.py#L94

    Docs: https://docs.python.org/3.4/library/unicodedata.html#unicodedata.normalize

    enhancement 
    opened by kylepjohnson 25
  • add Latin WordNet API

    add Latin WordNet API

    The Latin WordNet API mimics the NLTK Princeton WordNet API in all major respects; however because the data is sourced from latinwordnet.exeter.ac.uk (rather than locally) a number of under-the-hood changes were made. Many access methods now return generators rather than lists, and in general the API is now 'lazy' where multiple HTTP requests would cause a bottleneck. The Resnick, Jiang-Conrath, and Lin similarity scoring functions work, but require availability of a corpus-based information content file (forthcoming).

    opened by wmshort 24
  • Write syllabifiers for Indian languages

    Write syllabifiers for Indian languages

    This ticket is for @soumyag213

    As discussed by email, you'll port this and related modules, to the CLTK, from the Indic NLP Library.

    For a first step, I'd like to see this working in your own repo, which you have started at: https://github.com/soumyag213/cltk-beginning-indo. In the README for this, I would like to see an example of its API. For example, I imagine you showing something like this is the Python shell (BTW I like iPython):

    In [1]: from indic_syllabifier import orthographic_syllabify
    In [2]: orthographic_syllabify('supercalifragilisticexpialidocious', 'tamil')
    Out[2]: 'su-per-cal-i-fra-gil-ist-ic-ex-pi-al-i-doc-ious'
    
    enhancement 
    opened by kylepjohnson 24
  • Processing text with square brackets using the Latin NLP pipeline

    Processing text with square brackets using the Latin NLP pipeline

    I noticed an anomaly processing Latin text with the default pipeline. The tokenizer fails to separate square brackets from the words they enclose.

    text = 'Benedictus XVI [Iosephus Aloisius Ratzinger] fuit papa et episcopus Romanus.'
    
    from cltk import NLP
    
    cltk_nlp = NLP('lat')
    cltk_nlp.analyze(text).tokens
    

    Result:

    ['Benedictus', 'XVI', '[Iosephus', 'Aloisius', 'Ratzinger]', 'fuit', 'papa', 'et', 'episcopus', 'Romanus', '.']
    

    The problem does not occur when the LatinWordTokenizer is used.

    from cltk.tokenizers.lat.lat import LatinWordTokenizer
    
    tokenizer = LatinWordTokenizer()
    tokenizer.tokenize(text)
    

    Result:

    ['Benedictus', 'XVI', '[', 'Iosephus', 'Aloisius', 'Ratzinger', ']', 'fuit', 'papa', 'et', 'episcopus', 'Romanus', '.']
    

    Environment: Windows 10 + python 3.9.13 + cltk 1.1.6.

    bug 
    opened by DavideMassidda 0
  • SpaCy process

    SpaCy process

    I added the spaCy process with a custom wrapper to translate Token from spacy to Word in cltk. The aim is to be able to use trained models provided by spaCy with CLTK.

    opened by clemsciences 0
  • A way to tell what tokens `LatinBackOffLemmatizer()` has failed to lemmatize

    A way to tell what tokens `LatinBackOffLemmatizer()` has failed to lemmatize

    In LatinBackOffLemmatizer() and the lemmatizers in its chain I can't seem to find an option to return an empty value (such as in OldEnglishDictionaryLemmatizer()'s best_guess=False option), instead of returning the input value, when the lemmatizer fails to assign a lemma.

    Without such an option, it doesn't seem possible to tell successful from unsuccessful lemmatization attempts programmatically, severely limiting the range of the lemmatizer's applications.

    question acknowledged feature-request 
    opened by langeslag 6
  • Bump certifi from 2022.5.18.1 to 2022.12.7

    Bump certifi from 2022.5.18.1 to 2022.12.7

    Bumps certifi from 2022.5.18.1 to 2022.12.7.

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Unicode issue with Greek accented vowels in prosody

    Unicode issue with Greek accented vowels in prosody

    Unicode has two code points for acute accented vowels, one in the Greek and Coptic block and one in the Greek extended block (for omicron they are U+03CC and U+1F79. The list of accented vowels only takes into account the acute accents in the Greek and Coptic block resulting in some vowels not being properly scanned.

    >>> from cltk.prosody.grc import Scansion
    >>> text_string = "πότνια, θῦμον"
    >>> Scansion()._make_syllables(text_string)
    [[['πότνι', 'α'], ['θῦ', 'μον']]]
    

    Expected behavior

    >>> from cltk.prosody.grc import Scansion
    >>> text_string = "πότνια, θῦμον"
    >>> Scansion()._make_syllables(text_string)
    [[['πο', 'τνι' , 'α'], ['θῦ', 'μον']]]
    

    Desktop

    • MacOS 13.0
    bug 
    opened by JoshuaCCampbell 1
  • Latin enclitic tokenizer broken?

    Latin enclitic tokenizer broken?

    Latin tokenizer does not separate -que, ne, ve. In line 147 of tokenizers/lat/lat.py I suggest: specific_tokens += [token[: -len(enclitic)]] + ["-"+enclitic] This fixed it for me.

    Mac OS 15.7 Python 3.9

    bug 
    opened by polycrates 3
Releases(1.0.15)
Owner
Classical Language Toolkit
Natural language processing for Classical languages
Classical Language Toolkit
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
KR-FinBert And KR-FinBert-SC

KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adapt

5 Jul 29, 2022
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021